共查询到19条相似文献,搜索用时 125 毫秒
1.
模糊C均值聚类在电力负荷建模中的应用研究 总被引:1,自引:0,他引:1
针对负荷建模中统计综合法研究薄弱的现状,在某省全电网大范围调研基础上,提出了基于模糊C均值算法的分类思想,并对调查的48个枢纽变电站和纺织行业典型用户的负荷特性进行了分类研究,得到其相应聚类中心矩阵,分析了聚类结果和聚类中心矩阵,得出了有意义的结论,表明该方法可以有效的进行变电站的聚类和综合以及典型行业用户的精选,解决了负荷建模中变电站特性分类处理和典型用户的精选的复杂性与主观性,对综合负荷建模具有重要的指导意义.该方法具有概念清晰,计算方便,算例论证了其正确性和有效性. 相似文献
2.
汤小华 《中国新技术新产品精选》2014,(1):158-159
本文在传统时间序列法的基础上,提出了一种利用聚类方法进行分析的负荷预测方法,利用该方法对某市的电能负荷进行预测,得到了较精确的结果,表明该方法能为电力负荷的预测提供有效的参考。 相似文献
3.
最小二乘支持向量机(least square support vector machines,LSSVM)在解决小样本、非线性和高维度问题中表现出许多特有的优势.但是,如果输入的训练数据本身存在着大量的噪声和冗余,LSSVM在训练数据时会因抑制它们而削弱本身的推广能力,结构风险无法达到最小化,从而导致收敛速度慢、预测精度不高等缺点.提出了一种基于免疫模糊聚类(immune fuzzy clustering,IFC)的最小二乘支持向量机预测模型,运用免疫模糊聚类算法对历史数据进行预处理,从聚类后的数据提取LSSVM的训练样本,从而提高训练速度和预测精度,克服LSSVM的上述缺点.最后,将该模型运用到短期电力负荷预测中,与经典的SVM和BP神经网络相比具有更好的泛化性能和预测精度. 相似文献
4.
中长期电力负荷的模糊回归预测 总被引:1,自引:0,他引:1
针对中长期电力负荷预测中观测数据及负荷变化规律的模糊性,提出了一种新的负荷预测方法-模糊回归预测。该方法通过建立具有模糊回归参数的回归模型,可以直接由模糊观测数据预测出未来负荷值。文中通过实际算例验证了所提方法的可行性。 相似文献
5.
分析了电力系统中长期负荷特性以及RBF神经网络的非线性功能,引入一种减聚类算法来选取网络隐层节点中心,并将该方法在Matlab下进行了仿真。将预测结果与实际负荷值、灰色理论模型得到的结果进行对比分析,结果表明采用减聚类算法的RBF神经网络模型在隐层节点选择上更加精确,用其建立的模型具有较好的预测精度,具有一定的实用价值。 相似文献
6.
基于模糊理论的电力负荷预测研究 总被引:2,自引:0,他引:2
陈志巧 《山东科技大学学报(自然科学版)》2006,25(2):81-83
电力系统负荷预测对电力系统规划和运行极其重要,论述了电力负荷预测的内容和基本过程。将模糊理论应用到电力系统的负荷预报中,基于模糊理论的电力负荷预测可以达到较高的精度,效果良好。 相似文献
7.
改进的相似优先比模型在浦东新区电力负荷预测中的应用 总被引:2,自引:0,他引:2
改进优先比方案是将模糊理论中的相似优先比运用于负荷预测后发现原基本模型的某些不足之处而进一步提出的模型,主要吸收了模糊理论中综合评判思想,采用了多因素 归预测,充分考虑电力负荷受多因素作用的客观实际,同时还根据预测对象不同,对模型进行修改,给出相应的满意度。 相似文献
8.
9.
针对某些发达城市因负荷波动大而导致的长期电力负荷预测精度低问题,提出了一种基于数据驱动线性聚类(data-driven linear clustering,DLC)的自回归积分滑动平均(auto-regressive integral moving average,ARIMA)预测方法。首先,利用线性特征作为聚类标准对每年的大型变电站负荷数据集进行预处理;然后,对得到的每个子序列构建最优自回归积分滑动平均模型,以预测其相应的未来负荷;最后,汇总所有的模型预测结果从而获得电力系统长期负荷预测结果。从误差分析和应用结果可知,理论和实践都验证了所提出的方法在保证建模精度的同时能够降低随机预测误差,从而获得更稳定、更精准的电力系统负荷预测结果。 相似文献
10.
模糊理论在电力负荷预测中的应用 总被引:7,自引:0,他引:7
提出了一种预测电力系统负荷的新方法。该法首先根据模糊聚类分析的方法对电力负荷及其相关环境因素的历史样本进行归纳分类,然后采用合适的模糊数及模糊集刻画出各类样本中负荷变化的模式及环境因素的特征,最后,由未来环境因素状态判定未来负荷变化属于哪种模式,从而预测出电力负荷的未来值。文中以我国某省中期负荷预测为例,说明了所提方法的有效性。 相似文献
11.
杨华芬 《长春工程学院学报(自然科学版)》2009,10(1):68-71
提出了基于改进聚类算法的模糊神经网络的短期负荷预测方法。首先,利用改进聚类算法确定模糊神经网络的结构,然后利用混合学习算法训练该网络的前件和结论参数,最后向训练好的模糊神经网络输入相关的影响因素数据进行预测。预测结果显示,改进的模糊神经网络可以获得较高的预测精度,所以有更好的使用价值。 相似文献
12.
灰色模型GM(1,1)在短期电力负荷预测中的应用 总被引:4,自引:0,他引:4
讨论了灰色模型GM(1,1)及其改进模型在短期电力负荷预测中的应用,提出了适合电网普通日及特殊日电力负荷预测的数据处理方法,提高了预测的精度。 相似文献
13.
基于BP神经网络的组合预测及在电力负荷的应用 总被引:6,自引:1,他引:6
分析了电力负荷预测的意义及预测原理,并以传统方法证明了组合预测的优越性.在经典预测方法线性回归和现代预测方法灰色模型的基础上,通过BP神经网络进行组合预测,分别应用单一模型和以计算机为工具的组合模型对上海市年电荷用量进行预测.通过分析和比较验证了该组合算法的有效性, 相似文献
14.
电力负荷预测是电力系统规划的重要工作之一.提出一种改进的模糊层次分析法来进行中长期负荷预测.首先,采用三角模糊数表征专家判断信息以充分考虑专家判断的模糊性,采用层次分析法对专家判断结果进行处理以得到方案层各方案的最优权重.该负荷预测模型综合考虑了影响电力负荷的多种不确定因素,并在综合不同模型预测结果的过程中引入专家经验.最后,研究结果表明,该方法相比传统方法能够更好地应用于电网中长期电力负荷预测. 相似文献
15.
深度学习模型通过学习数据的深层特征能够有效提高电力负荷预测的准确率,但同时也带来了超参数较多、模型可解释性差等问题。针对这些问题,文中将深度森林模型引入短期电力负荷预测领域。在多粒度级联森林模型的基础上改进了多粒度窗口扫描方法,调整窗口大小与滑动步长,使模型能够在不同时间尺度下提取电力负荷数据的周期性特征。此外,改进深度森林输出层的计算方法,将输出结果由离散的类向量改进为连续的预测值,进而提高模型的精确度。最后在中国东北电网的实测数据中验证了文中所提出方法的可行性与有效性。从实验结果可知,改进深度森林算法在较高预测精度的情况下能取得更高的准确率,并且相较于深度神经网络具有更快的学习速度。 相似文献
16.
电力系统短期负荷预测软件包的设计与实现 总被引:2,自引:0,他引:2
文章介绍了电力系统短期负荷预测软件包的实现。该软件包不仅包含了常规的实用预测方法 ,还通过引入模拟退火、模糊理论与遗传算法对神经网络进行了改进 ,效果较好 ,达到实用化水平。文中对各种预测方法和数据预处理技术进行了说明 ,并介绍了软件包的总体设计方案和功能。最后 ,结合实际系统预测结果对各种预测方法进行了分析比较 相似文献
17.
本文简单分析了几种常用的中长期负荷预测方法存在的缺点,针对电力市场环境下对负荷预测精度的高要求,提出了一套精度较高且实用的中长期负荷预测的方法.应用该方法对广西某地方电网进行负荷预测,计算结果表明,该方法的预测结果误差小,在实际预测领域有较高的实用价值. 相似文献
18.
将智能主体(agent)技术应用到短期负荷预测系统中,提出了基于多agent的负荷预测系统的功能分层模型。针对如何从web页面提取有用的数据并将其集成并入到数据库中这一重要问题,提出结合agent技术将HTML(hypertext markup language)页面转化为XML(extensiblemarkup language)数据源的方法,使得在论文提出的功能结构中,数据采集层除具备基本的数据采集功能外,同时具备集成web页面的数据信息到系统数据库中的功能。给出了功能agent的实现方案。最后以一个实例证明了该方法的有效性。 相似文献
19.
利用灰色理论本身的特征对经济参数进行预测,并运用自适应模糊神经网络对其拟合误差进行预测,从而达到较好的预测效果.最后以安徽省历年固定资产投资实际数据为例,利用人工神经网络建立经济预测模型,模型预测结果较传统灰色理论直接预测更符合实际趋势,效果较好. 相似文献