共查询到20条相似文献,搜索用时 9 毫秒
1.
孙德淑 《西南师范大学学报(自然科学版)》2017,42(8)
利用弱链对角占优M-矩阵的逆矩阵的无穷大范数的范围,给出了弱链对角占优B-矩阵线性互补问题误差界新的估计式,进而给出B-矩阵线性互补问题误差界的估计式.新估计式改进了已有文献的结果. 相似文献
2.
利用弱链对角占优M-矩阵的逆矩阵的无穷大范数的范围,结合不等式放缩技术,给出了弱链对角占优B-矩阵线性互补问题误差界新的估计式,进而给出B-矩阵线性互补问题误差界的估计式.新估计式改进了已有文献的结果. 相似文献
3.
根据双α-链对角占优矩阵的定义与性质,给出其线性互补问题的误差界.数值实例显示该误差界在判定线性互补问题近似解的精确性中是有效的. 相似文献
4.
利用严格对角占优M-矩阵的逆矩阵的无穷大范数的范围,得到了B-矩阵线性互补问题误差界新的估计式.理论分析和数值实例均表明,新估计式改进了目前已有的相关结果. 相似文献
5.
利用严格对角占优M-矩阵的逆矩阵的无穷大范数范围,得到了P-矩阵的子类B-矩阵线性互补问题的新的误差界估计式. 相似文献
6.
7.
《湖北民族学院学报(自然科学版)》2018,(4)
利用严格对角占优M-矩阵的逆矩阵的无穷大范数的界,给出了B-矩阵线性互补问题解的误差界、扰动界新的估计式.理论分析和数值实例表明新估计式改进了已有的结果. 相似文献
8.
针对H-矩阵线性互补问题误差界的估计式,利用双严格对角占优矩阵的性质和函数的单调性,得到了含有参数的双严格对角占优矩阵线性互补问题的误差界,并确定了其最优值. 相似文献
9.
《云南大学学报(自然科学版)》2017,(4)
B-矩阵是一类重要的P-矩阵,在线性互补问题的研究中具有重要作用.利用严格对角占优M-矩阵逆矩阵无穷范数上界的估计式,结合不等式放缩技术,给出了B-矩阵线性互补问题误差界的一个新估计式.理论分析和数值算例表明,新估计式改进了现有的几个结果. 相似文献
10.
李艳艳 《湖北民族学院学报(自然科学版)》2019,(1)
研究在最优停步问题、期权定价问题中广泛应用的线性互补问题误差界上界的估计问题.通过对B矩阵定义式的恰当变形,构造了严格对角占优M矩阵,进而利用该矩阵逆矩阵无穷范数已有的估计式和一些不等式,得到了B矩阵线性互补问题误差界新的估计式.并通过理论证明说明新结果的优越性. 相似文献
11.
利用严格对角占优M-矩阵的逆矩阵无穷大范数新上界,给出B-矩阵线性互补问题解的新误差上界,并用数值例子说明新误差界的有效性. 相似文献
12.
李艳艳 《云南民族大学学报(自然科学版)》2022,(1):61-64,70
研究广义α-双链对角占优矩阵A的线性互补问题误差界的最优值,利用该类矩阵的性质和H矩阵线性互补问题的误差界经典估计式,得到了A的线性互补问题带有参数的误差界,并通过对构造的函数单调性的分析,进一步得到了该误差界的最优值. 相似文献
13.
《海南大学学报(自然科学版)》2018,(4)
利用严格对角占优M-矩阵的逆矩阵的无穷大范数的范围,得到了B~S-矩阵线性互补问题解的误差界、扰动界的新估计式,理论证明及数值算例表明所得新估计式比已有结果更加精确. 相似文献
14.
研究P-矩阵的新子类Dashnic-Zusmanovich矩阵线性互补问题的误差界.利用Dashnic-Zusmanovich矩阵M和■=I-D+DM的性质、不等式的性质,以及M矩阵的逆矩阵无穷范数上界的估计式,得到了矩阵M的线性互补误差界的估计式. 相似文献
15.
《广西师范学院学报(自然科学版)》2018,(4)
研究S-Nekrasov矩阵线性互补问题的误差界估计问题,在利用S-Nekrasov矩阵逆矩阵无穷范数估计式的基础上,通过构造分段函数,并对其进行分裂变形,得到了只与元素有关的线性互补问题的误差界估计式. 相似文献
16.
17.
《湖南文理学院学报(自然科学版)》2020,(2)
针对B-矩阵线性互补问题解的误差界估计问题,运用构造法,结合严格对角占优M-矩阵的逆的无穷范数的上界估计式和不等式的放缩技巧作了进一步研究,给出了相应误差界的一个比现有结果更优的估计式,并用理论分析和举例说明了新估计式的优越性。 相似文献
18.
首先研究∑1-SDD矩阵A的逆矩阵无穷范数的上界,其次,在该上界的基础上,利用∑1-SDD矩阵A和珟A=I-D+DA的关系,得到了A的线性互补问题的误差界,同时借助数值算例对估计式的优越性进行了说明.最后,得到了B-∑1-SDD矩阵线性互补问题的误差界. 相似文献
19.
利用Dashnic-Zusmanovich+矩阵的定义,通过不等式放缩技巧和Dashnic-Zusmanovich矩阵逆的无穷范数估计式得到Dashnic-Zusmanovich+矩阵线性互补问题解的误差界. 相似文献
20.
李艳艳 《湖南文理学院学报(自然科学版)》2021,33(3):8-11
为了研究S-Nekrasov矩阵线性互补问题的误差界,利用构造的对角占优矩阵、Nekrasov矩阵、S-Nekrasov矩阵三者之间的关系,结合Nekrasov矩阵线性互补问题的新结果,得到了S-Nekrasov矩阵线性互补问题的新误差界.最后用数值算例,进一步补充说明本文估计式的优越性. 相似文献