首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用一步电沉积法制备了石墨烯/聚嘧啶复合膜修饰电极.利用循环伏安法和方波伏安法研究了甲基对硫磷在该复合膜电极上的电化学行为.结果表明,该复合膜对甲基对硫磷具有灵敏度高、响应速度快等特点.在最佳条件下,甲基对硫磷的峰电流响应与其浓度在0.000 3~2.5 μmol/L范围内呈现良好的线性关系,检测限为0.05 nmol/L.该石墨烯/聚嘧啶复合膜修饰玻碳电极也表现出良好的稳定性、重现性和抗干扰能力,并可用于实际样品的检测.  相似文献   

2.
采用共聚法制备了掺杂磺酸的聚苯胺/多壁碳纳米管复合薄膜,并用其对铂电极进行表面修饰而制备出复合膜电极;通过扫描电子显微镜和红外光谱仪对复合膜电极表面的形态和组分进行表征,并采用电化学方法对其导电性和电催化活性进行测试.结果表明:与聚苯胺电极相比,掺杂磺酸的聚苯胺/多壁碳纳米管复合膜电极的表面形态更均匀致密,导电性能显著提高,响应峰电流从145μA增加到1.61mA,表面电荷密度提高了12.1倍,且稳定性也相应提高;复合膜电极具有较高电催化活性,在草酸环境中对抗坏血酸(AA)的线性响应不受干扰,其线性相关系数为0.996 0,灵敏度为9.09A/(mol·cm2),氧化峰的电位差达到340mV,能够明显区分其混合物.  相似文献   

3.
采用电化学法,在低电位下壳聚糖与氯金酸混合为电解液,直接共沉积,制备出金-壳聚糖纳米复合膜修饰的电极.实验考查了壳聚糖与氯金酸质量比对金-壳聚糖纳米复合膜形貌的影响、不同沉积时间对其形貌的影响及不同沉积电位对复合膜的活性表面积的影响.并用此复合膜成功固定了人类绒毛膜促性腺激素抗体,研制成无电子媒介的人类绒毛膜促性腺激素免疫传感器.通过电化学交流阻抗、循环伏安法和计时电流法研究免疫传感器的制作过程和电化学特性.考察了电极修饰过程中的抗原、抗体培育时间、pH值、温度等条件对传感器性能的影响.该传感器在人类绒毛膜促性腺激素为0.2~100mIU/mL的范围内有良好的线性关系,检测下限为0.1mIU/mL.  相似文献   

4.
电流型酶传感器的研究进展   总被引:2,自引:0,他引:2  
综述了国内外电流型酶传感器的研究发展现状.对酶电极制备中酶的各种固定化方法的特点、优势进行了探讨;对电子媒介体对传感器电流响应增强的作用机理、种类及电极修饰等进行了阐述,并讨论了干扰因素及解决的办法;进而对电流型酶传感器的研究发展前景予以展望.  相似文献   

5.
用Chit-SWCNTs/AuNRs复合膜将血红蛋白固定在电极的表面做H2O2生物传感器,研究其直接电子转移和电催化性能.在0.1 mol·L-1pH=7.0的磷酸盐缓冲溶液中,该复合膜电极有一对形态良好而且可逆的氧化还原峰,式电位为-0.313 V.电极上血红蛋白的表面覆盖度为(1.36±0.2)×10-9 mol·cm-2,由Laviron’s方程计算的该复合膜的表观异相电子转移速率常数为1.95 s-1.由复合膜电极对H 2O2的电催化还原,得到表观米氏常数为2.47×10-5 mol·L-1,说明复合膜电极对H 2O2有很好的亲和性.另外,该传感器对H 2O2响应迅速,有很好的稳定性和重现性.  相似文献   

6.
制备了一种碳纳米管/壳聚糖复合膜修饰的玻碳电极,并通过循环伏安法和计时库仑法详细研究了尿酸在复合膜修饰电极上的电化学行为.对诸如支持电解质,溶液pH,富集时间等实验条件进行了优化,结果表明,在pH=3.95 0.1 mol/L柠檬酸钠盐支持电解质中,尿酸在复合膜修饰电极上具有良好的电化学响应.相对于裸玻碳电极,尿酸的氧化峰电位负移20 mV,峰电流显著提高,锋形更为尖锐,表明复合膜对尿酸的电化学氧化具有一定的催化作用,计时库仑法结果表明尿酸在复合膜修饰电极上为两电子两质子的电子转移过程.尿酸的氧化峰电流与其浓度分别在5.0×10-9~5.0×10-7 mol/L范围内和1.5×10-6~1.0×10-4 mol/L范围内呈良好的线性关系,线性相关系数分别是0.994 7和0.988 4.开路富集120 s后,检出限为5.0×10-9 mol/L.将该复合膜修饰电极应用于人体实际尿样中尿酸的测量,结果令人满意.  相似文献   

7.
葡萄糖氧化酶多层膜修饰电极的电化学性能的研究   总被引:4,自引:1,他引:3  
利用层接层自组装法,制备出有序且稳定的葡萄糖氧化酶的多层膜.应用电化学方法和XRD方法研究了膜修饰电极的电化学传感性能.结果表明:该传感器具有较好的重现性和稳定性,传感器对葡萄糖的响应非常迅速;每次加入葡萄糖后,电极的电流响应会随之出现跳跃性增大,酶电极达到96%,稳态电流响应的时间仅为3 s;灵敏度可以通过合理地调解多层膜的厚度来控制.  相似文献   

8.
将电子媒介体硫堇(Thi)聚合于玻碳电极(GC)表面形成带正电的多孔聚硫堇(PTH)复合膜,再利用共价结合和静电吸附将纳米金(nano-Au)和过氧化物酶(HRP)修饰于电极上,从而制得HRP/nano-Au/PTH/GC传感器.用循环伏安法和计时电流法考察该修饰电极的电化学特性,发现该修饰电极对过氧化氢(H2O2)的还原有良好的电催化作用.实验结果表明:该传感器对H2O2的线性响应范围为1.4×10-6~4.26×10-3mol L,线性相关系数R=0.9993(n=23),检测下线为4.0×10-7mol L(S N=3),并具有选择性好、灵敏度高、响应快等优点.  相似文献   

9.
将辣根过氧化物酶(HRP)固定在Au-Gemini纳米复合物修饰的玻碳(GC)电极表面,制备了HRP修饰电极(HRP/Au-Gemini/GC),研究了HRP在Au-Gemini纳米复合膜中的直接电化学,考察了其对H_2O_2的电催化还原作用.研究表明,HRP在Au-Gemini纳米复合膜中发生了准可逆的电化学反应,其氧化峰峰电位(E_(pa))和还原峰峰电位(E_(pc))分别为-0.236 V和-0.273 V.HRP/Au-Gemini/GC修饰电极对H_2O_2具有良好的电催化还原响应,其表观米氏常数K_m=2.0×10~(-5)mol/L,H_2O_2浓度在1.0~7.0μmol/L范围内与催化电流呈线性关系.该研究为实现氧化还原酶的直接电子传递和生物传感器的构制提供了一种有效途径.  相似文献   

10.
浸渍-还原原位形成膜电极及乙烯催化传感技术研究   总被引:1,自引:1,他引:0  
以Nafion膜为固态电解质,采用浸渍-还原原位化学沉积方法制备金属/高聚物复合膜电极,研制了固态电解质型乙烯催化传感器。从I-R原位化学沉积形成膜电极研究中得出氯铂酸的NH4OH溶液为较好的Pt盐浸渍液,并且铂盐液浓度、还原溶液度膜起到关键作用。采用电位响应法对传感器进行乙烯催化传感器性能研究,并在近室温下得到了较好乙烯传感行为。  相似文献   

11.
以固态高聚物膜为电解质,用化学沉积法和浸渍-还原法制备了金属/聚合物的复合膜电极为气敏电极,组装成分别以电流型和电位型的CO电化学传感器,研究发现传感器的稳态输出电位与CO体积分数的对数呈线性关系;应用恒电位电解技术研究电流型传感器的传感性能,按电流 电压曲线确定其合适的外控电位,探讨了稳态扩散电流的产生,并在此外控电位下测定了传感器的线性应答。文中也研究了传感器的温度和湿度特性,研究表明在检测环境温度范围为30~45℃时传感器的温度系数为0.84μA/℃,从湿度特性发现在给定水蒸气分压下,输出电流与CO的体积分数之间具有线性关系,同时也随水蒸气分压增加而增大。  相似文献   

12.
通过X光衍射分析等方法,测试了ZrO_2基固体电解质氧传感器在700℃下的一氧化碳气体的环境中固体电解质和电极内外表面的物相组成,发现受CO气体影响后,内电极与固体电解质接界处有金属互化物PtZr生成,而且内电极表面的电镜图表明电极有明显的溶蚀迹象,固体电解质内壁有新物相YG_2和Zr_(0.82)Y_(0.18)O_(1.91)生成,同时氧化锆基体内表面有溶蚀的迹象。探讨了一氧化碳气体对氧化锆传感器响应时间和电导率的影响机理,认为CO气体不仅参与了电极反应,同时也和氧化锆基体发生了化学反应,改变了氧化锆固体电解质表面的晶体结构,使电阻升高,电极的响应时间加快。表1,参10。  相似文献   

13.
合成了金包二氧化硅纳米复合材料(Au@SiO2),并将其修饰于玻碳电极表面,固定上DNA探针后构建了一种新型的DNA电化学传感器.采用循环伏安法、差分脉冲伏安法(DPV)对于复合材料的电化学性能进行了研究.以5.0 mmol/L的[Fe(CN)6]3-/4-溶液为探针,分别对DNA的固定温度、固定时间、杂交温度以及杂交时间等试验条件进行了优化.结果表明:在优化条件下,利用DPV测定,目标DNA浓度的对数与峰电流在1.0×10-131.0×10-10mol/L范围内呈良好的线性关系,线性相关系数为0.995,检出限为1.0×10-15mol/L.该方法具有简单、快速、灵敏等优点.  相似文献   

14.
在环己烷、乙醇和水的混合溶液中,采用共沉淀法制备四氧化三铁-碳纳米管复合材料(CNTs-Fe_3O_4),利用扫描电镜和傅里叶变换红外光谱对CNTs-Fe_3O_4进行了表征.将CNTs-Fe_3O_4水相分散液滴涂到磁性碳糊电极(MCPE)表面,制备出一种新型电化学苯酚传感器(CNTs-Fe_3O_4/MCPE),利用电化学交流阻抗技术和循环伏安法表征CNTs-Fe_3O_4/MCPE的制备过程.在优化条件下,利用CNTs-Fe_3O_4/MCPE对不同浓度苯酚进行检测,结果表明,其线性响应范围为1×10~(-6)~1×10~(-4)M,相关系数R=0.996,检测限为1.81×10~(-7)M(S/N=3).所制备的苯酚传感器响应迅速、稳定、灵敏度高,可用于对微量苯酚的检测,在环境监测领域具有潜在的应用价值.  相似文献   

15.
将石墨烯和壳聚糖的复合物滴涂到玻碳电极表面,利用壳聚糖对纳米金的吸附将其修饰到上述电极,以纳米金对抗体的良好亲和力将酪蛋白抗体修饰到电极表面制成免疫传感器,利用循环伏安法对传感器进行表征.结果表明,石墨烯和纳米金有效地促进了电子的传递速度,提高了检测灵敏度.在优化条件下,响应电流与酪蛋白浓度的对数在10~10 000μg/L范围内呈良好的线性关系,检出限为2μg/L(S/N=3).  相似文献   

16.
为有效地对大气环境中的CO气体进行监控, 设计和制作了一种可在室温下工作的新型结构Nafion基CO气体传感器。该传感器由活性炭过滤帽、 Pt敏感电极、 Nafion膜、 对电极、 分隔层和储水罐等部分组成。储水罐的设计提供了Nafion膜正常工作时所需要的湿度环境。采用化学沉积法在Nafion膜上制备Pt敏感电极的工艺条件。研究结果表明, 当反应物H2PtCl6溶液浓度为5 mmol/L、还原剂NaBH4溶液浓度为30 mmol/L, NaBH4溶液的pH值为13时, 制作的Pt电极具有最好的气敏特性。对体积分数为400×10-6的CO测试时,响应电流为107 nA, 响应时间为40 s, 恢复时间为50 s。当CO体积分数在50~400×10-6时, 传感器的响应电流值与CO气体浓度具有很好的线性关系。  相似文献   

17.
The influence of structural design and the parameters of the working electrode on the response time of a solid polymer electrolyte (SPE) carbon monoxide sensor has been studied. Results show that the response time is mainly determined by the RC time constant of the catalyst layer and also related with the working electrode potential. Foundation item: Supported by the National Natural Science Foundation of China (107880233) Biography: Yang Jing (1972-), female, lecturer, reseorch direction: electrochemical sensors.  相似文献   

18.
采用简单的搅拌还原法制备了石墨烯/铜-银合金纳米复合物,基于该复合物修饰玻碳电极制备了新型的电化学传感器.用SEM和TEM扫描电镜对石墨烯和石墨烯/铜-银合金纳米复合物进行了表征.分别用循环伏安法和差分脉冲伏安法研究了鸟嘌呤和腺嘌呤在修饰电极上的电化学行为.结果表明,石墨烯/铜-银合金纳米复合膜显著促进了鸟嘌呤和腺嘌呤在电极上的电子传递速度.在0.1 mol/L醋酸盐缓冲溶液(ABS)中(pH 4.5),鸟嘌呤和腺嘌呤在该修饰电极上具有良好的电化学行为,鸟嘌呤和腺嘌呤分别在1.0100.0μmol/L浓度范围内,信号线性关系良好,相关系数分别为0.997和0.998.鸟嘌呤和腺嘌呤的检出限分别为6.0×10-8mol/L和5.0×10-8mol/L(S/N=3).将该传感器用于DNA样品中嘌呤碱基分析,得到(G+C)/(A+T)的比值为0.79.  相似文献   

19.
以蜡烛灰为原料,利用经济和绿色的合成方法制备出碳量子点纳米材料,并通过扫描电子显微镜来进行表征.利用碳量子点修饰碳玻电极制备电化学传感器,并通过循环伏安法和微分脉冲伏安法对传感器的电化学行为进行考察.结果表明,该传感器对多巴胺检测的线性检测范围为0.1~100μmol/L,检出限为0.02μmol/L(S/N=3).  相似文献   

20.
在玻碳电极表面电聚合5-氨基-2-巯基-1,3,4-噻二唑,制备了导电聚合物修饰电极.通过循环伏安法和示差脉冲伏安法研究了肾上腺素和抗坏血酸在该修饰电极上的电化学行为.发现肾上腺素在1.00×10-7~1.20×10-4 mol/L的浓度范围内与其氧化峰电流有良好的线性关系,检测限为3.80×10-8 mol/L.由于肾上腺素和抗坏血酸的电位差达220mV,大量抗坏血酸的存在不干扰肾上腺素的测定.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号