共查询到18条相似文献,搜索用时 78 毫秒
1.
提出了一种印刷品图像在线检测方法.首先,利用在图像特征点提取领域中运用最为广泛的SIFT(Scale Invariant Feature Transform)算法提取图像稳定特征点,生成特征向量描述符;然后根据向量最近邻(NN)和次近邻(SCN)的距离之比,对匹配点进行初步筛选;最后运用Mestimators法估计特征点对间的几何约束模型,利用该模型进一步精选特征点,确定真正的匹配点对个数,将精选后得到的特征点数与初步筛选得到的特征点数的比值作为判断印刷品是否合格的标准.实验结果表明:该方法能够准确地提取出图像特征点,并通过精选特征点能够在很大程度上改善误匹配问题,从而快速有效地检测出错误的印刷品,得到了良好的检测效果. 相似文献
2.
基于Harris-Affine和SIFT特征匹配的图像自动配准 总被引:4,自引:0,他引:4
针对大失配多传感器图像,提出了一种基于SIFT(scale invariant keypoints)和Harris-Affine(H-A)互补不变特征匹配的自动配准算法.算法应用SIFT和H-A两种具有互补特性的局部不变特征,根据最近邻特征点距离与次近邻特征点距离之比确定初始匹配点对,然后利用马氏距离的仿射不变性删除误匹配特征点对,据此求取2幅源图像间的仿射变换参数.使用估计的变换矩阵把待配准图像上的所有点映射到参考图像,并对其进行重采样,实现图像的配准.实验结果表明:该算法能够快速高精度实现大失配图像的自动配准. 相似文献
3.
针对SIFT特征匹配算法在特征空间中进行历遍搜索,匹配速度慢的问题,提出一种金字塔层间匹配算法。首先,根据特征点所处金字塔层不同将特征点划分为不同的集合,其次,选择待配准图像金字塔中某一层集合,在基准图像金字塔中寻找相似层,并确定待配准图像金字塔与基准图像金字塔层之间的相似关系,最后,在相似层之间寻找匹配点。待配准图像中的选择层集合由金字塔底层到顶层,寻找相似层所用时间依次缩短。与原算法相比,该算法具有相同的旋转稳定性。将该算法与原算法分别应用实际图像配准中,结果表明:可见光图像配准中,匹配速度提高了3.2倍,正确匹配率提高了10.3%,红外图像配准中,匹配速度提高1.4倍,正确匹配率达到100%。 相似文献
4.
针对SIFT特征匹配算法在特征空间中进行历遍搜索,匹配速度慢的问题,提出一种金字塔层间匹配算法。首先,根据特征点所处金字塔层不同将特征点划分为不同的集合,其次,选择待配准图像金字塔中某一层集合,在基准图像金字塔中寻找相似层,并确定待配准图像金字塔与基准图像金字塔层之间的相似关系,最后,在相似层之间寻找匹配点。待配准图像中的选择层集合由金字塔底层到顶层,寻找相似层所用时间依次缩短。与原算法相比,该算法具有相同的旋转稳定性。将该算法与原算法分别应用实际图像配准中,结果表明:可见光图像配准中,匹配速度提高了3.2倍,正确匹配率提高了10.3%,红外图像配准中,匹配速度提高1.4倍,正确匹配率达到100%。 相似文献
5.
基于特征点匹配的图像拼接算法 总被引:2,自引:0,他引:2
针对海洋图像的特点,对海上溢油航空遥感监测中的图像拼接方法进行研究.采用特征点匹配的方法,在待匹配的图像上人工选取三个特征点以对两幅有重叠区域的图像进行拼接,并构造一个图像拼接系统.数据处理结果表明,该方法能够得到较理想的拼接效果. 相似文献
6.
一种改进的SIFT特征点匹配算法 总被引:1,自引:0,他引:1
提出一种改进的SIFT特征点匹配算法.以提高图像特征点匹配算法效率为目的,研究了SIFT特征点描述子基于欧氏最小距离测度的匹配算法.由于SIFT特征点检测算法检测到的特征点数量较大,且每个特征点描述子都是128维的向量,而基于欧氏最小距离测度的匹配算法要求,待匹配第一幅图像的每个特征点要和待匹配第二幅图像的所有特征点求距离,排序后寻找极值,这导致了算法效率较低.依据光学成像理论和双目视觉理论,由第一幅图像每个特征点的坐标,从行列两个方向缩小第二幅图像待匹配特征点坐标的搜索范围,在保持匹配精度的基础上,提高了算法的效率,算法速度约是原算法速度的2.7倍. 相似文献
7.
基于边缘检测和Lipschitz指数的磁共振图像特征点选取 总被引:1,自引:0,他引:1
特征点的提取在医学图像配准中有着重要的意义。该文提出了一种磁共振颅骨图像特征点的选取方法,即在边缘检测、优化的基础上,利用Lipschitz指数找到颅骨外边缘的突变点作为特征点。实验证明,用本方法提取出的特征点是有效、稳健的,可用于下一步的图像配准。 相似文献
8.
《陕西理工学院学报(自然科学版)》2013,(3):33-38
针对深海海底图像光照不均,图像间变换关系复杂,图像的特征很难准确地进行描述的问题,提出一种基于SIFT算法的海底图像拼接方法。首先采用SIFT算法提取海底图像的特征点,用欧式距离比对提取出的特征点进行特征匹配,用随机抽样一致性算法,去除误匹配提高匹配效率,同时求出图像间的变换矩阵。最后采用基于高斯模型的渐入渐出融合法去缝,实现海底图像的光滑无缝拼接。实验结果表明,该方法拼接效果良好。 相似文献
9.
为提高铁道车辆工程应用中自动监测与故障诊断的准确性,对5种常用的特征点检测方法进行了对比研究,采用 SIFT (Scale Invariant Feature Transform)特征点检测实现重叠图像的拼接算法。在较宽松的条件下准确地匹配两幅图像。实验证明,该算法能有效地拼接普通相机拍摄的照片,消除图像扭曲、交叠和旋转对图像拼接的影响,并获得高分辨率的场景照片。 相似文献
10.
提出一种计算简便且配准效率高的算法.通过拟牛顿对Demons算法里的目标函数进行优化,从而得出形变向量u的方法,阐明了此方法配准的高效性,同时再结合SIFT算法对配准结果的检测,便能很直接很直观地看出配准结果的好坏,避免了判断两幅图相似性的大量计算.实验验证了所提出算法的有效性. 相似文献
11.
在一些计算机视觉和摄影测量任务的执行过程中,需要在线地标定摄像机参数,这就使得不依赖标定参照物的自标定成为必需,提出一种基于SIFT特征匹配和模约束的摄像机分层自标定方法。自由移动或旋转摄像机拍摄同一场景内部参数不变条件下的四幅以上图像。对每幅图像进行SIFT特征点提取,通过特征点匹配在每幅图像中分别获得对应三维场景空间同一特征点的像素坐标。进行投影标定,获得每幅图像在投影重建空间中的相机投影矩阵,以及每个特征点在投影重建空间中的三维坐标。进行仿射标定,采用模约束法确定无穷远参考平面在投影重建空间中的参数。进行度量标定,确定内参矩阵。实验表明,该方法能在线地稳定地获得摄像机内参标定结果,从而对现有的摄像机自标定方法进行了改进。 相似文献
12.
基于SIFT和RANSAC的特征图像匹配方法 总被引:1,自引:0,他引:1
针对目前普通图像匹配抗干扰能力不强的问题,将尺度不变特征变换(SIFT)和随机采样一致性(RANSAC)算法结合,提出了一种适应性强的图像匹配算法。首先对图像进行SIFT特征提取,利用最优节点优先搜索并计算最近邻特征向量与次最近邻向量间的欧式距离比来加速完成特征点对预匹配。在此基础上引入随机抽样一致性(RANSAC)算法去除不可靠的匹配对。最后根据匹配点对计算出图像间透射变换的参数。实验结果表明:该匹配算法具有尺度、旋转不变性以及一定的仿射不变性、抗干扰性,可以实现目标物体匹配。 相似文献
13.
针对多类物体识别中计算量大、识别率低等问题,在现有模拟视觉系统的计算模型基础上,对原模型进行了改进,提出了改进模型.首先,通过有效的算法提取图像中的兴趣点,并以此为中心选择适当尺度的小块作为特征模板,从而提高模板有效性;然后,确立了以固定兴趣点个数的方法来选择兴趣点,从而解决多类物体识别中兴趣点选取的阈值问题.对多类物体分类识别的实验结果表明:改进后的模型比原有模型具有更快的识别速度和更高的识别率. 相似文献
14.
应用GPS和IMU结合的POS系统制作正射图的方法生产效率高,成图周期短,成图质量取决于POS数据.采用SIFT特征匹配算法以及RANSAC算法剔除误匹配点,应用摄影测量学经典原理,得到对应影像的位姿信息,实现对原始POS数据的修正,通过最终空三结果以及图像拼接效果对比,得出的优化结果位姿更平整,更接近原始效果,消除了基于原始POS系统出现的畸变扭曲. 相似文献
15.
针对无人驾驶飞机UAV(Unmanned Aerial Vehicle)航空组合相机获取的大像幅影像旋偏角较大、 大尺度变化和颜色差异明显的问题, 提出基于极几何和单应约束的SIFT(Scale Invariant Feature Transform)特征多尺度LSM(Least Squares Matching)算法。该算法顶层金字塔影像采用SIFT快速匹配, 对匹配结果利用改进的RANSAC(Random Sample Consensus)算法计算影像间单应矩阵和基本矩阵; 对影像进行Harris特征提取, 根据极几何和单应约束采用双向一致性相关系数算法进行密集匹配; 通过更新单应矩阵, 设定阈值删除误匹配点; 对匹配的同名点进行最小二乘匹配获取子像素级精度。通过对具有较大旋偏角、 大尺度变化和颜色差异的3组实际航摄影像的试验对比表明, 与传统方法相比, 该算法具有较高的匹配成功率和较好的有效性。 相似文献
16.
鉴于ORB算法在特征点匹配时基本不具备尺度不变性,结合SIFT算法思想,提出了改进的ORB算法:SIRB(ORB and SIFT)。首先生成图像的多尺度空间,并在多尺度空间里检测稳定的极值点,使得提取出的特征点具有尺度不变信息;然后使用ORB描述子对特征点进行描述,生成旋转不变性的二进制描述子;最后通过Hamming距离完成对特征点的匹配。实验结果表明,SIRB有效地解决了ORB不具备尺度不变性的缺陷,在图像尺度发生变化时,SIRB算法特征点匹配的平均准确度达到约93.3%,相比于ORB提高了约70.7%;同时SIRB和ORB两种算法的匹配速度大致相当,SIRB保留了原ORB算法的快速优越性,平均匹配速度比SIFT快约63.2倍;将提出的SIRB算法应用到视频目标跟踪系统中,取得了良好的实验效果,具有一定的应用价值。 相似文献
17.
针对全局图像特征无法刻画图像类别信息的缺陷, 提出一种基于兴趣点特征的图像特征检索方法. 首先对图像进行仿射 尺度不变特征转换, 并利用亮度的概率密度梯度提取兴趣点; 然后将兴趣点映射回原始图像, 采用颜色直方图作为图像特征; 最后采用相似性度量模型, 实现图像检索. 选择Corel图像库中的图像对算法性能进行实验分析. 实验结果表明, 该方法可有效提高图像的检索准确率和检索效率, 快速找到用户需要的图像. 相似文献
18.
基于SIFT算子的图像匹配算法研究 总被引:4,自引:0,他引:4
针对目前基于SIFT(scale invariant feature transform)的图像匹配算法在匹配相似区域较多的可见光图像时,匹配约束条件单一,没有有效剔除误匹配点,误匹配率高的问题,提出一种匹配改进算法,针对128维SIFT特征向量,采用距离匹配和余弦相似度匹配相结合的测度方法,利用特征点方向一致性进一步降低误匹配率. 实验结果表明:改进算法对图像的缩放、旋转、光照、噪声和小尺度的视角变换均有较好的匹配效果. 与原算法相比,在保证匹配点数和匹配时间的基础上,改进算法对旋转、缩放、噪声模糊和光照变换的误匹配率平均降低10%~20%,对于小尺度的视角变换,误匹配率平均降低5%. 相似文献