共查询到16条相似文献,搜索用时 93 毫秒
1.
提出了基于粗糙集和神经网络的故障诊断方法。采用Kohonen网络对连续属性值进行离散化,应用粗糙集理论对特征参数进行属性约简,并把约简结果生成规则作为BP网络的输入。仿真结果表明,经粗糙集理论优化后的样本集进行神经网络训练,提高了神经网络的学习速度和故障诊断正确率,减少了训练时间。 相似文献
2.
粗糙集理论在内燃机柱塞故障诊断中的应用 总被引:2,自引:0,他引:2
陈海 《贵州工业大学学报(自然科学版)》2002,31(1):46-49
在对内燃机柱塞等故障利用神经网络进行诊为的基础上,引入粗糙集理论,对其在故障诊断特征参数属性优化中的运用进行了探索,并对故障诊断决策进行属性约简,剔除其中不必要的属性,揭示了故障诊断条件属性内在的冗余性,降低了神经网络构成的复杂性,最后给出了属性约简的结果。 相似文献
3.
在神经网络故障诊断模型的基础上,引入粗糙集理论,给出连续属性值的离散化方法.并应用粗糙集对故障诊断决策表进行属性约简,剔除其中不必要的属性.仿真结果表明,该方法可以有效地减少输入层个数,简化神经网络结构,减少网络的训练时间,在故障诊断中有良好的应用前景. 相似文献
4.
提出了一种基于粗糙集和遗传算法的改进BP神经网络算法.该算法首先对原始数据集进行属性约简,优化BP神经网络的输入变量;然后利用遗传算法全局搜索的特点,优化BP神经网络初始权重和阈值.将改进BP神经网络算法应用于客户分类,训练误差为5.92×10-12,测试总误差为0.00023;而改进前的一个比较理想的训练结果的训练误差为0.0016,测试总误差为0.073.Matlab仿真表明改进的BP神经网络算法有更好的训练精度和泛化能力. 相似文献
5.
针对民用机场多因素气象预测问题的复杂性,提出了一种基于粗糙集—RBF神经网络模型.该模型利用粗糙集理论约简气象影响因素,提取关键因素作为网络的输入,简化了网络结构.实例验证,该模型的学习训练速度和预测精度远优于传统的RBF神经网络模型. 相似文献
6.
基于粗糙集-神经网络故障诊断技术的研究 总被引:2,自引:0,他引:2
提出了一种基于粗糙集-神经网络故障诊断新方法,该方法利用粗糙集理论对数据样本进行数据浓缩,提取初步的映射规则.该规则通过神经网络进行粗映射,利用神经网络的分类逼近能力,建立输入状态空间到输出空间的精确映射,大大提高了神经网络的收敛速度和逼近精度.通过对一个电力电子电路进行实验,实验结果表明,该方法可以有效地减少输入层神经元个数,提高神经网络模型的学习效率和诊断的准确性,在故障诊断中有良好的应用前景. 相似文献
7.
提出一种基于粗糙集CMAC神经网络的智能互补融合的诊断策略.该策略利用粗糙集理论对数据样本进行数据浓缩.提取初步的诊断规则.对初步的诊断规则通过神经网络进行粗映射,利用神经网络的分类逼近能力,建立故障状态空间到诊断空间的精确映射.大大提高了神经网络的收敛速度和逼近精度.将该神经网络应用于的变压器故障诊断实例.结果表明.该神经网络具有分类逼近能力强.计算量小等优点.诊断正确率比普通神经网络的诊断正确率高. 相似文献
8.
基于克隆选择的粗糙集属性约简方法 总被引:6,自引:1,他引:6
基于免疫克隆选择的原理,提出了一种新的粗糙集属性约简方法,将属性集合的分类近似质量作为进化目标,利用免疫反应的分布性特点通过局部并行搜索实现全局优化,并采用抗体更新和亲和力抑制手段来维持群体的多样性,保证了各抗体局部优化解的稳定性,从而获得了多个优化约简集合,通过机械故障诊断数据的实例应用,表明该方法可以获得多个符合分类质量要求的属性约简集合,因此满足了设备故障诊断的特征优化选择要求。 相似文献
9.
基于粗糙集和BP神经网络的空气质量评价方法 总被引:1,自引:1,他引:1
基于粗糙集理论,提出了空气质量评价参数的选取算法,在不降低有效分类信息的前提下对监测数据经过约简并作为BP神经网络的输入数据,简化了网络结构,提高了训练速度和测试精度.基于BP神经网络的空气质量评价方法能有效融合多种监测数据,系统通用性强.实验表明,基于粗糙集和BP神经网络的空气质量评价方法是可行有效的. 相似文献
10.
粗糙集结合BP神经网络的数据融合方法研究 总被引:2,自引:0,他引:2
在粗糙集和数据融合基本理论的基础上,研究了基于粗糙集理论和BP神经网络相结合的数据融合方法。先利用粗糙集对输入信息进行简化,剔除冗余信息,从而缩减了BP神经网络的规模,提高了融合系统的识别率,进而提高整个融合系统的效率。与传统的神经网络融合系统进行比较,通过实例说明了该方法的有效性。 相似文献
11.
针对故障诊断中设备监控数据越来越多的特点,提出用于故障诊断的粗糙神经网络模型。此模型的创新点是基于SOFM网络和差别矩阵的离散化算法,此算法不但指导属性划分类数,而且保证了得到最优属性约简,同时,充分利用了粗糙集和神经网络的故障诊断能力来保证诊断结果的准确性和彻底性。实践证明:此模型在工程上有着很好的适用性和可信性,能够为解决现代工业工程中的故障诊断提供有效的参考。 相似文献
12.
基于粗糙集理论的人工神经网络故障诊断系统 总被引:8,自引:1,他引:8
在故障诊断神经网络模型的基础上,以粗糙集理论中的信息系统属性值表为主要工具,将复杂的神经网络分层的简并剔除其中不必要的属性,克服了网络规模过于庞大及分类识别速度慢等缺点,取得了减少分类过程中的模式匹配搜索量的良好效果,并给出基于粗糙集理论的分层发掘神经网络模型结构及算法,结果表明该系统对工程应用具有一定的参考价值。 相似文献
13.
基于粗糙集与模糊神经网络的多级压缩机诊断 总被引:8,自引:0,他引:8
为解决多级往复式压缩机故障诊断这一复杂问题,提出了一种棋于智能互补融合的智能诊断策略、该策略利用粗糙集理论对数据样本进行党费,形成初步的诊断规则,并基于该结果形成模糊神经网络,再利用网络的分类逼通能力,建立从故障状态空间至解释空间的精确映射,从而达到故障诊断的目的,另外,还提出了一种基于误差反馈的节点函数特性变化模糊神经网络逼近器和新的数据党费度量指标-数据蒸发率,对一台四级压缩机的故障诊断结果表明,提出的新方法具有诊断率和数据蒸发率高、结果易于被人理解、诊断计算最小等优点。 相似文献
14.
宋喜忠 《信阳师范学院学报(自然科学版)》2014,(2):292-295
传感器节点通常被随机布撒于环境恶劣甚至无人能及的区域,容易发生各类故障.为了解决此问题,研究了基于K-Means算法和粗糙集神经网络的节点故障诊断方法.首先,采用改进的K-Means算法离散化数据连续属性值;然后,通过粗糙集互信息法对数据属性进行约简,以提高诊断效率;最后,建立三层的BP神经网络故障诊断模型,通过蛙跳算法对权值优化得到最终的故障诊断模型.仿真实验证明文中方法能实现传感器节点故障诊断,且与其他方法相比,具有较高的故障诊断精度和较少的诊断时间. 相似文献
15.
基于BP网络的设备故障诊断研究 总被引:1,自引:0,他引:1
通过运用人工神经网络知识,准确、及时地对某运输公司的汽车发动机进行了故障诊断,并且取得了较为准确的诊断结果。不仅提高了发动机运行的安全性以及可靠性,而且为建立基于知识的诊断技术提供了强有力的技术支持和实现的可能性。 相似文献
16.
一种基于粗糙集理论的设备故障诊断方法 总被引:2,自引:0,他引:2
粗糙集理论是一种处理模糊和不确定知识的数学工具。本文根据粗糙集理论,对设备的振动故障诊断决策表进行属性约简,以提取故障识别的重要属性,降低决策表的冗余性。分析表明,粗糙集理论应用于故障诊断可得到更清晰、简明的诊断规则。 相似文献