首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
2.
用STM针尖对金表面进行纳米修饰,发现了一种新的现象。隧道电阻变小时,阈值电压开始减小后增在。这种现象可以用场蒸发和场梯度诱导表面原子扩散的复合模型来解释。  相似文献   

3.
利用相转移法合成了在有机溶剂中有很好分散性的十二胺表面修饰金纳米粒子。通过调节金盐与十二胺的物质的量比可以得到不同尺寸分布的金纳米粒子,其中刀(金盐):n(十二胺)=1:10时,平均粒径最小,并且以选择性沉淀分离法将其分离成尺寸不同、接近单分散的3部分:运用紫外可见光谱(UV-vis),红外光谱(IR)、X-射线衍射(XRD)和透射电镜(TEM)对金纳米粒子进行了相关表征和分析。  相似文献   

4.
用半胱氨酸做稳定剂,壳聚糖做修饰剂,通过NaBH4还原HAuCl4制备了稳定的金/壳聚糖复合纳米粒子(Au/CS),并研究了反应物配比对金纳米粒子性能的影响.通过紫外-可见、红外、X射线衍射及透射电镜对其结构进行了表征.结果表明,当反应物选择合适的配比时可以合成性能良好的金纳米粒子.  相似文献   

5.
表面增强拉曼光谱检测金纳米粒子表面配体取向   总被引:1,自引:0,他引:1       下载免费PDF全文
使用表面增强拉曼光谱研究了苯硫醚在不同曲率半径的金纳米粒子表面的取向差异。结果表明,金纳米粒子半径越小,其表面配体分子中的苯环越倾向与金粒子表面平行排列。  相似文献   

6.
7.
自组装单分子膜的研究是近年来倍受关注的研究领域。随着膜的应用领域的拓展,对膜的组装技术和表征方法不断提出新的要求。综述了现阶段分子自组装膜的主要制备方法和基底表面的处理方法;着重从电化学、谱学、显微学等方面综述了近几年来自组装单分子膜的表征方法研究进展,并对其发展前景作了展望。  相似文献   

8.
DDP修饰纳米粒子的摩擦学性能比较   总被引:2,自引:0,他引:2  
利用表面修饰法合成了表面为DDP所修饰的PbS、PbO、ZnS和Zn(OH)2纳米粒子,并用四球摩擦磨损试验机考察了它们分别作为润滑油添加剂的摩擦学行为。结果表明,无机纳米核的不同对DDP修饰纳米粒子作为润滑油添加剂的摩擦学性能影响甚微,所合成的DDP修饰无机纳米粒子作用润滑油添加剂都能够明显提高基础油的抗磨性能,但是却不能有效改善其减摩能力。  相似文献   

9.
以巯基乙酸为稳定剂及表面修饰剂,在水溶液中合成了平均粒径为10 nm左右的CdS纳米粒子,用胃蛋白酶改变CdS纳米粒子的表面修饰状态并研究了其系列特性.CdS纳米粒子在292 nm附近有强的紫外吸收,有524.8 nm的荧光发射,胃蛋白酶对其表面修饰后,紫外吸收峰位不变,荧光峰位蓝移至462.4 nm,荧光强度降低.温度及pH值对表面修饰产生影响.在最佳实验条件下,胃蛋白酶质量浓度在2~20 mg/L范围内与荧光降低值之间成线性关系,检测限 (3σ) 为0.13 mg/L (n=10),方法可用于人体胃液胃蛋白酶的测定.  相似文献   

10.
利用电化学氧化,在氨介质中将石墨氧化剥离。通过光子相关光谱(PCS)、透射电镜(TEM)、选区电子衍射(SAD)、粉末X射线衍射(XRD)、傅立叶红外转换光谱(FTIR)、X射线光电子能谱(XPS)等分析表征,表明电解过程中石墨被剥离成50nm左右的颗粒,这些纳米颗粒以无定型的多层和单层结构并存。层片上含有石墨氧化后产生的含氧官能团,赋予其良好的亲水性并可稳定地分散于水介质中。  相似文献   

11.
聚苯胺修饰电极的制备与形貌、阻抗表征   总被引:1,自引:0,他引:1  
运用循环伏安(CV)法制取聚苯胺,结合扫描电子显微镜(SEM)、阻抗谱(EIS)等手段,对聚苯胺的表面形貌及其特征进行研究,并建立了聚苯胺覆盖Pt电极的阻抗模型.实验表明,随着循环次数的增加,聚苯胺膜厚增加,而且所制得的聚苯胺膜呈现多孔、疏松的特征,符合其作为基体材料的特点.  相似文献   

12.
0 IntroductionTrifluoperazine is a derivative of phenothiazine. It hasneuroleptic and antidepressive actions, hence has beenwidely used in the treatment of psychotic patients[1]. As it hassuch function and application, trifluoperazine’s characteristicsand detection methods were studied by means of spectropho tometry[2], capillary zone electrophoresis[3], titrimetry[4],fluorometry[5], high performance liquid chromatographyetc[6]. Because of the electroactivity of trifluoperaz…  相似文献   

13.
在半胱氨酸自组膜上固定抗体(羊抗小鼠IgG)制备免疫传感器,分别与巯基十一酸自组膜和32-巯基-3,6,9,12,15,18,21-七氧杂三十二烷酸(EG6COOH)自组膜免疫传感器比较其性能。结果发现通过半胱氨酸自组膜制备的免疫传感器具有最好的灵敏度。能够在13min内。0.05~5.4μg/L范围对游离IgG灵敏检测,检测下限为0.05μg/L。  相似文献   

14.
通过化学还原法制备出不同粒径的纳米金(GNPs).利用紫外-可见分光光度计(UVVis)和透射电子显微镜(TEM)对GNPs的形貌及尺寸进行表征.讨论了还原剂种类、还原剂用量、保护剂等因素对GNPs形貌、粒径、稳定性和分散性的影响.结果表明:还原剂柠檬酸钠的用量直接影响GNPs的尺寸大小,但当柠檬酸钠用量超过3 mL时,制得GNPs的尺寸不再变化,以柠檬酸钠为还原剂制得GNPs粒径在13~50 nm之间,分散性好且尺寸较均匀,此时,保护剂PVP对大尺寸GNPs的制备影响不大;以硼氢化钠为还原剂,可制得GNPs粒径在2~3 nm之间,分散性好,此时保护剂PVP对于制备的影响较显著,但不影响GNPs的可控制备.  相似文献   

15.
16.
应用循环伏安法研究了细胞色素c在2-氨基乙硫醇自组装膜修饰金电极上的电化学行为。结果表明,细胞色素c在2-氨基乙硫醇修饰的金电极上的电子传递过程为—扩散控制的可逆反应,2-氨基乙硫醇自组装膜可用作细胞色素c电子传递的有效促进剂。依据电化学石英晶体微天平和电化学交流阻抗谱的测量结果,讨论了单分子膜的组装过程及其对促进细胞色素c电子传递的作用机制。  相似文献   

17.
利用金纳米粒子(Au NPs)和电化学还原氧化石墨烯(ERGO)制备了以玻碳电极(GCE)为基底电极的复合材料修饰电极Au NPs-ERGO/GCE.采用场发射扫描电子显微镜(FESEM)、拉曼光谱、循环伏安(CV)法、计时电流法等方法对复合材料修饰电极进行了系统表征与分析.将所制备的复合材料修饰电极应用于葡萄糖的电化学分析研究.研究数据表明:所制备的Au NPs-ERGO/GCE电极对葡萄糖具有良好的电催化性能,有较宽的检测范围和较好的灵敏度,同时,对抗坏血酸(AA)、尿酸(UA)和氯离子(Cl~-)等共存的干扰物均有良好的抗干扰性能.  相似文献   

18.
Recently, much attention has been paid to the self-assembled monolayers (SAMs) or Langmuir-Blodgett films (LB films) of molecules bearing azobenzene group on the surface. Azobenzene derivatives are attractive ow-ing to their interesting photoresoponsive behavior[1—5]. Azobenzene and its derivatives take both trans (E) and cis (Z) structures with respect to the azo linkage and normally exist in the more stable trans form[6]. Being irradiated with appropriate light, organic molecules and po…  相似文献   

19.
通过四辛基溴化铵稳定的金纳米粒子(TOAB-Au)与含可聚合双键的二硫化物配体之间的置换反应,制备了四种双键功能化的金纳米粒子,并通过紫外光谱、红外光谱、X-光电子能谱、透射电镜和热重分析对金纳米粒子的形貌和组成进行了表征。结果表明,双键功能化的金纳米粒子能够稳定地分散在氯仿和四氢呋喃溶剂中,粒子直径在4 nm到8 nm之间,表面等离子共振吸收峰随配体的不同在521 nm到532 nm之间改变。四种双键功能化的金纳米粒子的表面配体接枝密度在4.2到6.6之间。  相似文献   

20.
利用自组装单分子膜原理,通过层层组装的方法将金纳米粒子(AuNPs)和DNA探针分别固定到金电极表面制备成探针电极。结果表明纳米金可以使响应电流大大增强,有利于提高检测的灵敏度;同时DNA自组装到纳米金修饰的金电极上,形成一层致密的分子膜,可使响应电流下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号