首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 718 毫秒
1.
普鲁兰降解酶(pullulan degrading enzymes)能够专一水解普鲁兰多糖α-1,6-糖苷键以及特定位置的α-1,4-糖苷键,在工业、食品业、医疗保健等行业中具有重要的应用意义.本研究采用唯一碳源法从稻田土样中培养筛选到21株产普鲁兰降解酶的菌株.对菌株A1的鉴定及其产生的普鲁兰降解酶的分析表明,该菌株为气单胞菌属,其产生的酶属于Ⅰ型普鲁兰酶(Type I pullulanase,EC 3.2.1.41),专一水解普鲁兰多糖α-1,6-糖苷键.该酶的最适反应温度为60℃,最适反应pH为6.0,具有良好的温度稳定性和适应性;同时在pH为4.0时仍然保留50%的酶活.进一步对A1菌株产酶的发酵条件(pH、温度、时间)进行了优化,摇瓶中A1分泌表达Ⅰ型普鲁兰酶的水平达到21.2 U/mL.根据已报道的气单胞菌属普鲁兰酶基因的保守序列设计引物,克隆获得了4 053 bp的A1普鲁兰酶基因pluA1全长序列,编码1351个氨基酸.本研究结果为该酶的开发应用奠定了基础.  相似文献   

2.
从嗜酸普鲁兰芽孢杆菌基因组中扩增出普鲁兰酶基因Pul A,并将该基因连接到大肠杆菌表达载体p ET-28a中,构建了普鲁兰酶基因的诱导表达载体p ET-28a-Pul A。测序结果表明,普鲁兰酶基因Pul A长度为2766 bp,编码922个氨基酸。将重组载体转化至大肠杆菌BL21(DE3)后,普鲁兰酶基因Pul A在IPTG诱导下获得表达,产生胞内蛋白。SDS-PAGE测定的分子量约为110 k D。细胞超声破碎液酶活为0.45 U/m L。该酶的最适温度为55℃,最适p H为5.0,金属离子对酶活性影响不显著,具有I型普鲁兰酶特性。此重组普鲁兰酶的酶学性质表明此酶具有独特的耐酸性质,具备一定的工业化应用价值。  相似文献   

3.
【目的】开发适用于海藻糖生产的新型海藻糖合成酶。【方法】通过反向PCR技术,从一株纤维微菌的基因组DNA中获知海藻糖合成酶基因完整ORF序列,进而克隆得到纤维微菌海藻糖合成酶基因(CCTreS),将其与表达载体pSE380构建重组质粒后转入大肠杆菌BL-21(DE3)中诱导表达,通过镍柱亲和层析纯化得到纯酶并进行酶学性质测定。【结果】从纤维微菌中克隆并在大肠杆菌中成功表达海藻糖合成酶基因(CCTreS)。经纯化获得的重组酶(CCTreS)在以麦芽糖为底物生成海藻糖时,最适反应pH值为7.0,最适反应温度为45℃,40℃保温1h仍具有80%以上的相对酶活力,在pH值5.5~8.5保存24h,相对酶活力仍保留80%以上。Cu~(2+)对其有明显抑制作用。【结论】该重组酶具有很好的热稳定性和pH稳定性,具有一定的研究价值和潜在的工业应用价值。  相似文献   

4.
【目的】克隆、表达克雷伯氏菌Klebsiellasp.GXK-1菌株中的α-L-鼠李糖苷酶基因,并研究重组酶的酶学性质。【方法】比对分析GenBank数据库中克雷伯氏菌同属的α-L-鼠李糖苷酶基因序列,设计简并引物PCR扩增基因的保守区。扩增目的基因,以pSE380为表达载体构建重组质粒pSE-rha1,并在大肠杆菌E.coli XL-blue进行诱导表达,使用镍亲和层析纯化重组蛋白,研究目的蛋白RHA1的酶学性质。【结果】以pNPR为底物,进行重组酶酶学性质的研究。重组酶RHA1的最适pH值和最适温度分别为5.0和45℃,Km值为(0.223±0.030)mmol/L,V_(max)值为(1.272±0.121)μmol/(min·mg)。在pH值为6~10的缓冲液内酶活力仍保持在80%以上;在温度为40℃以下时,酶活较为稳定,但在温度高于40℃时酶活力迅速下降。RHA1能水解pNPR、橙皮苷和芦丁。【结论】RHA1具有良好的pH稳定性,不仅能够水解人工底物pNPR,还能够水解α-1,6键的天然底物橙皮苷和芦丁,具有一定的医疗应用价值。  相似文献   

5.
【目的】了解在毕赤酵母中表达的来源于草酸青霉(Penicillium oxalicum)GXU20的重组生淀粉糖化酶的酶学特性。【方法】用3,5-二硝基水杨酸法测定pH值、温度、金属离子和化学试剂对纯化的重组生淀粉糖化酶的活力的影响,同时测定酶的底物特异性、酶对生淀粉的吸附能力以及酶对不同生淀粉的水解效率等,用高效液相色谱法对该酶水解生木薯淀粉的产物进行分析鉴定,用扫描电子显微镜观察重组酶对不同生淀粉颗粒的水解方式。【结果】重组生淀粉糖化酶rPoGA15A的最适pH值为4.5,最适温度为65℃,在pH值为2.0~10.0时,重组酶具有较好的pH耐受性,温度小于50℃时,酶的稳定性好。除Ag~+、Cu~(2+)和SDS之外,其他大部分金属离子和化学试剂对重组酶的酶活力影响不大。重组生淀粉糖化酶对大米和玉米生淀粉的活性较高,对木薯和马铃薯生淀粉的活性次之,重组生淀粉糖化酶rPoGA15A对不同生淀粉的吸附能力与其对相应不同生淀粉的水解活性大小呈正相关。扫描电子显微镜观察表明重组生淀粉糖化酶对不同生淀粉颗粒的降解作用明显,水解方式各有特点。高效液相色谱分析表明该重组生淀粉糖化酶水解生木薯淀粉的产物仅有葡萄糖。重组生淀粉糖化酶rPoGA15A在40℃下对大米和玉米生淀粉水解72h后水解率分别达到86.5%和71.9%。【结论】重组生淀粉糖化酶具有广泛的pH耐受性,对生淀粉具有高水解活性,在生淀粉的水解和生料同步糖化发酵生产酒精中有一定的应用潜力。  相似文献   

6.
低聚果糖(Fructooligosaccharides,FOS)具有改善胃肠道环境、刺激和加强机体免疫反应、抑制肠道特定肿瘤的发生等生物活性.内切菊粉酶能够水解菊粉获得低聚果糖.为了实现内切菊粉酶的高表达,从无花果曲霉(Aspergillus ficuum ATCC16882)中克隆了内切菊粉酶编码基因INU2,并实现了在毕赤氏酵母中的重组分泌表达,摇瓶表达的酶活力为570.4U/mL.去除内切菊粉酶的内源性信号肽序列后,其重组表达水平显著提高,摇瓶表达的酶活力为1013.8U/mL,提高幅度77.7%.TLC分析表明:毕赤酵母重组表达的内切菊粉酶(不含内源性信号肽序列)能将2%长链菊粉水解为2~3个聚合度的低聚果糖.  相似文献   

7.
【目的】对黑曲霉和里氏木霉产酸性木聚糖酶的性能及所产粗酶的酶学特性进行分析比较,尤其是考察pH值为4时木聚糖酶酶活力及稳定性,从而确定潜在的较为理想的酸性木聚糖酶。【方法】将里氏木霉和黑曲霉接种至培养基进行产酶培养,比较分析两者的酸性木聚糖酶、酸性木糖苷酶的酶活力及酶学特性。【结果】黑曲霉酸性木聚糖酶和酸性木糖苷酶的酶活力最高分别达(52.36±2.61)U/mL和(0.57±0.01)U/mL,酸性木聚糖酶最适温度和pH值分别为55℃、5.0,酸性木糖苷酶最适温度和pH值分别为75℃、5.0;里氏木霉酸性木聚糖酶和酸性木糖苷酶的酶活力最高分别达(10.12±0.95)U/mL和(0.32±0.05)U/mL,酸性木聚糖酶最适温度和pH值分别为65℃、6.5,酸性木糖苷酶最适温度和pH值分别为65℃、4.5。黑曲霉和里氏木霉的酸性木聚糖酶兼有酸性CMCase酶活力,分别为(5.26±0.21)U/mL、(1.72±0.21)U/mL。【结论】黑曲霉所产酸性木聚糖酶明显比里氏木霉的更优良,是潜在的较为理想的酸性木聚糖酶。  相似文献   

8.
利用曲里苯蓝法从淀粉加工厂废水氧化池酸性污泥样品中筛选普鲁兰酶产生菌,对筛选到的GXAS-38菌株进行形态观察、生理生化特征分析、16SrDNA序列系统发育分析和普鲁兰酶酶学性质研究,并用PCR方法克隆GXAS-38菌株的普鲁兰酶基因。结果表明,GXAS-38菌株属于肺炎克雷伯氏菌(Klebsiella pneumoniae),其产普鲁兰酶的最适反应温度为60℃,在温度35~50℃时酶活较稳定;最适反应pH值5.5,在pH值5.0~7.5时酶活较稳定。Ca2+、Na+和Li+对GXAS-38菌株的普鲁兰酶活性有激活作用;Cu2+、Zn2+、Co2+、Mn2+、Fe2+、Fe3+和Ba2+对GXAS-38菌株的普鲁兰酶活性有抑制作用;螯合剂EDTA能够强烈地抑制GXAS-38菌株的普鲁兰酶活性,GXAS-38菌株的普鲁兰酶反应需要金属离子参与。GXAS-38菌株完整的普鲁兰酶编码基因全长3291bp,编码1096个氨基酸。  相似文献   

9.
对一株产气气杆菌产普鲁兰酶的发酵培养基进行了优化,确定了该菌株的最适发酵培养基配方为(g/L):玉米淀粉 15,豆饼粉 10,CH3COONH4 8,K2HPO4·3H2O 0.5,MgSO4·7H2O 0.5,KCl 0.5,FeSO4·7H2O 0.05.采用该培养基在5 L 发酵罐水平发酵 55h,普鲁兰酶活力达到 54.64 U/mL.研究了不同铵盐形式对该菌株产普鲁兰酶的影响,结果发现:以CH3COONH4为无机氮源,该菌株产普鲁兰酶活力高,且该酶绝大部分能分泌至胞外.而以NH4Cl,NH4NO3及(NH4)2SO4为无机氮源,该菌产普鲁兰酶活力较低,且为胞内酶.  相似文献   

10.
以普鲁兰糖为唯一碳源,利用平板涂布法从海泥中分离到一株产碱性普鲁兰酶的细菌M25,结合菌株形态特征观察和16S rDNA基因序列分析,确定该菌株为假交替单胞菌(Pseudoalteromonas sp.).该菌在30℃、200 r/min条件下培养18 h达到产酶最高峰,其合成普鲁兰酶的模式属于同步合成型.酶学性质研究表明:该普鲁兰酶的最适作用温度是50℃,在70℃下保温2 h活力残留50%以上;最适作用pH值为8.0,在pH值6.0~9.0较稳定.实验结果显示该菌所产普鲁兰酶具有较好的温度稳定性和pH稳定性.  相似文献   

11.
【目的】对大肠杆菌Escherichia coli嗜盐α-淀粉酶基因进行改造,并探索嗜盐α-淀粉酶的嗜盐特性。【方法】从非嗜盐的大肠杆菌JM109中克隆到一个嗜盐α-淀粉酶基因k6并进行重组表达。通过同源建模,确定Na+结合位点上的氨基酸残基,并对相应位点进行定点突变。最后对突变酶的酶学性质进行研究。【结果】相对于野生酶,突变酶更加嗜盐,其最适NaCl浓度由2mol/L增加到3mol/L,最适pH值为7,最适温度为50℃,酶活力为4 831U/mg,提高近4倍。经HPLC检测,突变酶与2%(W/V)可溶性淀粉反应后的产物为葡萄糖、麦芽糖、麦芽三糖的混合物。【结论】嗜盐α-淀粉酶基因k6的嗜盐特性与Na+结合位点具有直接联系。  相似文献   

12.
【目的】筛选耐热α-淀粉酶并实现异源表达,同时分析其酶学性质特征。【方法】以M9培养基加上可溶性淀粉作为选择性分离培养基,从腾冲火山温泉土壤中筛选到产淀粉酶的菌株Anoxybacillus sp.GXS-3。根据淀粉酶氨基酸保守序列,设计引物进行PCR扩增,然后对目标序列进行步移扩增,获得淀粉酶基因AmyGX。将AmyGX与表达载体pQE30连接,导入大肠杆菌M15中表达,对重组酶进行分离纯化和酶学性质分析。【结果】AmyGX基因长1 515 bp,编码505个氨基酸残基,前23个氨基酸残基为信号肽序列;重组质粒pQE30-AmyGX编码的蛋白分子量为58.04kDa,对可溶性淀粉催化水解反应的最适温度为60℃,最适pH值为8.0,V_(max)、K_m值分别为0.19U/mg、3.14mg/mL,热半失活温度T_(50)~(30)值为65.2℃;Zn~(2+)、Cu~(2+)、Co~(2+)、Fe~(3+)、Ba~(2+)对该酶具有明显的抑制作用,Na~+、K~+对该酶有激活作用,Mg~(2+)、Ca~(2+)的影响则不明显。【结论】AmyGX是一种中等耐温碱性酶,在造纸、洗涤剂生产和有毒废弃物去除等方面具有潜在的应用前景。  相似文献   

13.
从淀粉加工厂附近土壤中筛选得到一株普鲁兰酶高产菌株,编号为Z-13,其初始酶活达到5.7 U/mL.通过对此菌株的16S rDNA比对,以及生理生化鉴定,鉴定此菌株为克雷伯氏菌(Klebsiella variicola),通过发酵条件优化,确定最佳发酵产酶条件为:玉米淀粉1.5%,蛋白胨2.0%,KH2PO40.05%,MgSO4·7H2O 0.01%.装液量为70 L/250 L,培养基最初pH为6.0,发酵温度30℃,摇床转速200 r/min,发酵时间48 h,优化后菌株产普鲁兰酶的酶活高达67.8 U/mL,是优化前菌株产普鲁兰酶活性的11.89倍.  相似文献   

14.
【目的】为了解决纤维素的酶水解问题,分析能水解纤维素的微生物的相关基因。【方法】从阴沟肠杆菌(Enterobacter cloacae)的基因组数据中挖掘纤维素酶相关基因,发现开放读码框Cel8A和纤维素酶基因序列具有高相似性。利用重组表达技术在大肠杆菌中对Cel8A基因进行表达,纯化重组蛋白质并对该蛋白质进行功能鉴定。【结果】Cel8A蛋白质能水解羧甲基纤维素钠,它具有β-1,4-内切葡聚糖酶的水解特性。Cel8A的最适反应pH值为7.0,最适温度为40℃。【结论】成功克隆表达阴沟肠杆菌的Cel8A基因,并证实该基因编码的蛋白质具有β-1,4-内切葡聚糖酶活性,为进一步研究阴沟肠杆菌的纤维素酶组成以及纤维素降解机理奠定了基础。  相似文献   

15.
选择来源于极端嗜热菌Thermosipho melanesiensis(DSM12029)的普鲁兰酶基因,以购自德国菌种保藏中心的基因组为模板,扩增出普鲁兰酶基因TM-pulA;利用酶切酶连构建了重组质粒pET21a-TM-pulA;转入大肠杆菌Rosetta(DE3)菌株中诱导表达并经纯化后,进行了水解产物分析和酶学性质测定.结果显示:TM-pulA为Ⅰ型普鲁兰酶,最适pH为5.8;最适温度是80℃;70℃下半衰期为4.75 h;Mn~(2+)、Co~(2+)、AL~(3+)、Fe~(3+)、SDS及EDTA对其酶活有不同程度的抑制作用;该酶的K_m、V_(max)、K_(cat)及K_(cat)/Km值分别为4.68 g·L~(-1)、0.0085 mmol·L~(-1)·s~(-1)、71.18 s~(-1)、15.21 L·g~(-1)·s~(-1).  相似文献   

16.
邱杰  刘玉婷  陈钰泉  廖威  袁晶  谭强 《广西科学》2018,25(4):438-443
【目的】对酶形式差异的三酶系统一步法裂解头孢菌素C(CPC)制备7-氨基头孢烷酸(7-ACA)进行研究。【方法】对重组大肠杆菌分别进行摇瓶和发酵罐高密度表达,获得最高酶活后使用两个形式差异的三酶系统一步法转化CPC制备7-ACA。【结果】相较于摇瓶发酵,发酵罐发酵获得的酶活更高,发酵罐上对重组大肠杆菌的高密度表达发现,补料流加总量为400mL的甘油混合液(15%甘油+7.5%鱼蛋白胨,W/V),发酵72h后菌浓度达到32.79g/L、最高的戊二酰-7-氨基头孢烷酸酰化酶(GA)和过氧化氢酶(CAT)活力分别为7 099.85U/L和15 776.20U/L。利用一个三酶系统包括固定化D-氨基酸氧化酶(DAAO)、游离GA和CAT,一步法催化CPC获得的7-ACA生成率为87.28%;而另一个三酶系统包括固定化DAAO、冻融细胞GA和CAT一步法催化CPC获得的7-ACA生成率为87.10%。【结论】两种酶形式差异的三酶系统一步法制备7-ACA的得率大致相等。GA对α?酮己二酰-7-氨基头孢烷酸(AKA-7-ACA)的特异性和水解能力较差,限制了该工艺运用。  相似文献   

17.
【目的】了解海洋细菌Shewanella haliotis BP-1中海藻酸裂解酶降解海藻酸钠的生物活性。【方法】应用基因克隆和大肠杆菌异源表达技术,过量表达海藻酸裂解酶,将粗酶液通过DEAE Sepharose FF柱分离纯化后检测其酶活性。【结果】从S.haliotis BP-1菌株的基因组DNA中克隆得到一个大小为2 157bp的海藻酸裂解酶基因Alg17S,该基因编码的海藻酸裂解酶Alg17S属于PL17家族的蛋白,大小为79 726Da,其中包括N端26个氨基酸的信号肽,与Saccharophagus degradans 2-40菌株产生的海藻酸裂解酶Alg17C具有高度同源性,相似性为52%。经纯化后获得的重组酶Alg17S和△snAlg17S(N端不含26个氨基酸的信号肽)均具有降解海藻酸钠的活性,但△snAlg17S对海藻酸钠的催化活性比Alg17S高,其酶比活力高达9 635U/mg。【结论】重组海藻酸裂解酶△snAlg17S兼具高表达水平及高酶活性,是进一步研究海藻酸盐糖化和生物燃料生产的潜在的优势酶。  相似文献   

18.
碳水化合物结合模块(Carbohydrate Binding Modules,CBMs)在普鲁兰酶结构中普遍存在,对酶的催化性质起重要作用.本文将酸性普鲁兰酶Pul B的N端结构域CBM41-X45替换成耐热普鲁兰酶Pul A的N端结构域CBM68,得到重组酶Pul-11,同时将Pul-11的催化结构域替换成Pul A的催化结构域,得到重组酶Pul-12.结果显示,重组酶Pul-11和Pul-12的最适温度均较Pul B提高了10℃,最适pH分别提高了0.5和1;60℃下热稳定性分别提高了41.4%和44.0%;同时,重组酶Pul-11和Pul-12的底物亲和力和催化效率较Pul B也均有一定程度提高.可见,来源于耐热普鲁兰酶的新型底物结构域CBM68对普鲁兰酶的最适作用温度、最适作用pH及催化效率具有重要影响.  相似文献   

19.
【目的】通过对具有支链淀粉水解能力的环糊精水解酶的结构进行分析,探寻决定酶与支链淀粉水解相关的关键氨基酸残基。【方法】对底物特异性发生改变的环糊精水解酶cds1-3进行功能鉴定,并利用分子模拟方法对其底物作用特异氨基酸序列和空间结构进行分析。【结果】环糊精水解酶cds1-3具有特殊的底物作用方式,它水解支链淀粉的能力强于水解环糊精。cds1-3和ThMA的蛋白质序列只有30个氨基酸的差异,主要位于远离底物结合区域的蛋白质中段,与环糊精水解酶的底物通道聚集位置相近。【结论】环糊精水解酶cds1-3的功能鉴定及对其关键氨基酸进行序列和空间结构分析,为揭示大分子底物,特别是支链淀粉底物的水解方式提供新的切入点。  相似文献   

20.
分别以多孔陶瓷和浮石为载体吸附法固定重组大肠杆菌(Escherichia coli JM 109-pLF3)表达β-葡聚糖酶.研究了载体量、转速、温度、pH等条件对固定化细胞产酶的影响.结果表明,以多孔陶瓷和浮石为载体固定化细胞发酵可以大大提高产酶效率,二者均可有效吸附重组大肠杆菌,发酵液的酶活分别达到97 U/mL和73 U/mL,比悬浮液体发酵提高了2~3倍;载体量、转速、温度对产酶的影响较大,多孔陶瓷和浮石的最佳装载量分别为20 g/100 mL培养基和8g/100 mL培养基,最佳转速为200 r/min,最佳培养温度为37℃;发酵液pH值对细胞产酶的影响较小,pH值6.0~8.0之间发酵液的酶活力变化不大.重复批次发酵结果表明,固定化发酵具有良好的重复使用能力,在连续10批次实验中,多孔陶瓷载体和浮石载体固定化发酵的酶活力分别不低于91 U/mL和72 U/mL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号