首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 296 毫秒
1.
以3-氯代苯酐和间苯二酚为初始原料,合成了3,3'-(间苯)二醚二酐(3,3'-Rs DPA).将其与3,3',4,4'-联苯四甲酸二酐(BPDA)以不同比例和4,4'-二氨基二苯醚(4,4'-ODA)发生缩聚反应,以邻苯二甲酸酐(PA)为封端剂,经化学亚胺化后,制备了一系列特性粘度控制在0.47~0.48 d L·g~(-1)的热塑性聚酰亚胺(TPI)模塑粉.采用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)、差式扫描量热仪(DSC)以及X-射线衍射(XRD)对聚酰亚胺模塑粉的结构和性能进行表征,同时考察了样品的机械性能.研究发现:当3,3'-Rs DPA与BPDA的摩尔比为6∶4时,共聚聚酰亚胺的性能较好,玻璃化转变温度(Tg)为252℃,熔融温度(Tm)为327℃,5%热失重温度(Td5%)为553℃,拉伸强度高达124 MPa,弯曲强度为175 MPa,XRD也表明该聚酰亚胺具有一定的结晶行为良好的耐热性、优异的机械性能及良好的加工性能使该聚酰亚胺材料可用于3D打印技术中.  相似文献   

2.
以4,4’-对苯二甲酰二邻苯二甲酸酐(TDPA)和1,3-双(4-氨基苯氧基)苯(BAPB)为单体,采用2步溶液缩聚法,制得高相对分子质量的聚酰胺酸(PAA)溶液,经4种亚胺化工艺合成了TDPA/BAPB型聚酰亚胺(PI)树脂.通过FT-IR、WAXD、DSC、TGA、溶解性能等对PI树脂进行测试和表征.FT-IR表明4种方法均形成了酰亚胺结构,WAXD及DSC分析表明TDPA/BAPB型PI为部分结晶型结构,熔融温度(Tm)为363~370 ℃,TGA测试揭示乙酸酐/吡啶化学亚胺化PI耐热性能最佳,且较其它3种方法溶解性也更好,可溶于DMSO、NMP、间甲酚等强极性溶剂中.PAA溶液流延成膜性能良好,热亚胺化PI薄膜具有较好的力学性能,拉伸强度为118.3 MPa,弹性模量为2.5 GPa.  相似文献   

3.
为了考察分子结构对聚酰亚胺性能的影响,在4,4’-二氨基二苯醚-均苯四甲酸二酐(ODA-PMDA)型聚酰亚胺中引入具有不对称结构的单体3,4'-二氨基二苯醚(3,4'-ODA),制备共聚改性均苯型聚酰胺酸,经热亚胺化得到所需聚酰亚胺.分别用全反射红外光谱仪(FT-IR)、静态热机械分析仪(TMA)、同步热分析仪(TGA)和万能试验机对聚合物性能进行表征.结果表明:随着聚合物中不对称结构单体3,4’- ODA的引入,在保持聚合物优良的耐热性能的同时,溶解性能得到明显改善,玻璃化温度降至314℃,拉伸强度和拉伸模量分别降至91.33和1536 MPa,加工性能有所提高.  相似文献   

4.
用三种不同的方法制备了降冰片烯二甲酸酐(NA酐)封端聚酰亚胺预聚体,亚胺化条件确定为190℃、60min,交联条件为310℃、2h。讨论了预聚体的分子量、分子结构对其结晶性的影响,压力对交联聚合物的结晶性及其化学结构的影响,以及聚合物的热分解机理。制备了NA酐封端的热固性聚酰亚胺复合材料,以均苯二酐和苯酮二酐混用所得产物,抗弯强度6.01×12~5kPa,介电损耗0.0049,介电常数5.20,巴氏硬度83.5,热分解温度480℃。  相似文献   

5.
共缩聚聚酰胺酸和聚酰亚胺的合成与表征   总被引:1,自引:0,他引:1  
以4,4′-二氨基二苯甲烷(MDA)为二胺单体,均苯四甲酸酐(PMDA)和3,3′,4,4′-二苯酮四羧酸二酐(BTDA)为二酐单体,低温溶液聚合生成一种共缩聚聚酰胺酸(PAA).然后亚胺化脱水环化生成共缩聚聚酰亚胺.通过特性粘度([η])、红外光谱(FT—IR)、热重分析(TG)和X衍射分析(XRD)等对聚合物进行了一系列的结构表征和性能测试.FT-IR表明,在1777 cm~(-1)和1723 cm~(-1)处观察到聚酰亚胺特征峰;TG表明.PI的10%热失重温度为568℃;XRD表明,PI的结晶度较低且分子链间距d为0.5069 nm.  相似文献   

6.
以3-氯代邻苯二甲酸酐和间苯二酚为初始原料,研究了反应时间、反应温度对合成3,3'-(间苯)二醚二酐(3,3'-Rs DPA)单体的影响.以邻苯二甲酸酐(PA)为封端剂,将合成的3,3'-Rs DPA与1,4-双(4-氨基苯氧基)苯(TPEQ)、1,3-二氨基苯(MPD)、4,4'-二氨基二苯醚(4,4'-ODA)和1,4-二氨基苯(PDA)发生缩聚反应,经化学亚胺化制备了一系列聚酰亚胺(PI)模塑粉,并对聚酰亚胺的热性能、力学性能进行了表征.结果表明:合成的聚酰亚胺具有良好的热稳定性,其质量损失5%的热分解温度在空气中为525~531℃,在氮气中为526~538℃;玻璃化转变温度(Tg)随着二胺单体刚性的增加从218℃升高到261℃.当二胺单体为PDA时,PI(3,3'-Rs DPA-PDA)具有明显的熔融结晶行为,其熔融温度(Tm)为327℃.良好的耐热性及优异的可加工性能使该聚酰亚胺材料有望用于3D打印技术中.  相似文献   

7.
合成具有独特结构的三蝶烯-2,3,6,7-四甲酸二酐,利用低温溶液缩聚-化学酰亚胺化法,分别与4,4'-二氨基二苯甲烷(DMA)、4,4’-二氨基二苯醚(ODA)合成两种结构新颖的聚酰亚胺.利用傅里叶变换红外光谱(FT-IR)、热失重分析(TGA)与示差扫描量热法(DSC)等手段对聚酰亚胺进行表征,研究其溶解性能、特性...  相似文献   

8.
以三羟甲基丙烷和二羟甲基丙酸为原料,在对甲苯磺酸催化下合成了端羟基超支化聚酯,8-[4′-丙氧基(1,1-联苯)-氧]-辛酸为封端剂对超支化聚酯进行改性,采用羟值滴定确定封端率。通过红外光谱(FT-IR)和核磁共振谱(NMR)对改性前后超支化聚酯的化学结构进行了表征,并采用差示扫描量热法(DSC)和广角X射线衍射(WAXD)对所合成超支化聚合物的热性能进行了研究。结果表明,封端剂的最佳用量为聚合物中羟基物质的量的1.05倍,在此条件下,超支化聚合物封端率达到92.02%;改性前后聚合物化学结构与理论结构一致,改性后聚合物玻璃化温度显著升高,且聚合物物相由无定形态转变为晶态与非晶态共存。  相似文献   

9.
以双(4-氨基苯基)-9,10-二氢-9-氧杂-10-磷杂菲-10-磷酰基乙烷(ADOPPE)和2-(3-氨基苯基)-5-氨基苯并咪唑(i-DAPBI)为二胺原料,按一定物质的量比与4,4′-(六氟异丙烯)二酞酸酐(6-FDA)、3,3′,4,4′-联苯四羧酸二酐(BPDA)、3,3′,4,4′-二苯甲酮四甲酸二酐(BTDA)等3种不同二酐缩聚,成功得到几个不同系列的咪唑型含磷聚酰胺酸(PAAs),然后经热亚胺化制得对应的咪唑型含磷聚酰亚胺。通过FTIR对咪唑型含磷聚酰亚胺进行了结构表征;采用DSC、TGA和UV-Vis,溶解性测试、力学性能测试等分析数据比较了其综合性能。结果表明,合成的咪唑型含磷聚酰亚胺薄膜基本都具有优异的热性能、较高的透光性以及较好的力学性能。PI-a系列能很好地溶解在有机溶剂中。  相似文献   

10.
用4,4′-二氨基二苯醚(ODA)作为二胺,3,3′,4,4 ′-二苯酮四甲酸二酐(BTDA)及2,2-双[4-(3,4-二羧基苯氧基)苯基]丙烷二酐(BPADA)作为二酐,以N,N-二甲基甲酰胺(DMF)为溶剂,通过常规的两步法,合成聚醚酰亚胺.用FT-IR、TGA、溶解性测试和拉伸测试对聚合物的结构和性能进行表征.结果表明,在1780 cm-1、1720 cm-1和744 cm-1左右出现了聚酰亚胺的特征吸收峰.所得聚酰亚胺有很好的热稳定性,在氮气氛中,起始降解温度506.6~519.6℃,10%失重温度(T10)为534.4~542.3℃、800℃质量保持率为52.7%~61.7%.所得聚酰亚胺膜的拉伸强度、拉伸模量、断裂伸长率、吸水率分别为128.2~281.3 MPa、1.82~4.45 GPa、100.0%~11.9%、0.52%~0.70%.  相似文献   

11.
以间苯二胺和均苯四甲酸二酐为单体经过一系列反应合成了两种含偶氮苯侧链的聚酰亚胺。实验中采用了两条合成路线:(1)通过化学亚胺化合成聚酰亚胺,再通过后偶氮偶合的方法将偶氮苯生色团引入到聚酰亚胺分子链,从而得到了带有偶氮苯侧链的聚酰亚胺;(2)先合成带有偶氮苯侧链的聚酰胺酸,再通过热亚胺化得到聚酰亚胺。文中对这两种路线得到的聚酰亚胺进行了特性粘度、红外光谱、核磁共振、差示扫描量热测试。结果表明这两种聚酰亚胺的结构基本一致,而路线(2)得到的聚酰亚胺的特性粘度和玻璃化转变温度均稍高于路线(1)得到的聚酰亚胺。  相似文献   

12.
以4,4’-二氨基二苯硫醚(SDA)和联苯四酸酐(BPDA)为原料,通过溶液缩聚-热酰亚胺化/化学酰亚胺化的方法制备了一种新型的含硫醚结构联苯型聚酰亚胺。利用高级旋转流变仪在线跟踪反应进程,采用热失重分析仪研究反应条件对热酰亚胺化及化学酰亚胺化法的影响,为进一步制备高性能的聚酰亚胺建立有效的实验手段和方法。采用小角激光光散射法、红外光谱、元素分析、接触角仪、DSC等方法对聚合物的结构与性能进行表征。结果显示,硫醚结构的引入使聚合物的表面张力与铜箔相当,可有效改善聚合物薄膜的表面性能,其与铜箔之间的黏附功明显大于传统聚酰亚胺,在无胶挠性线路板应用方面显示出较好的应用前景。所获聚合物的绝对重均相对分子质量为(3.8±1.1)×104g/mol,分解温度均高于560℃;DSC的结果显示所制备的两种酰亚胺化聚合物均具有较高的玻璃化转变温度,相比之下,化学酰亚胺化更有利于获得高酰亚胺化程度的聚合物,产物的玻璃化转变温度也更高。  相似文献   

13.
在微波辐射条件下,首先由改进的Chichibabin反应和水合肼催化还原合成了一种新型含吡啶环的芳香二胺(PBAP),然后由此经"两步法"分别制备了其均聚和共缩聚聚酰亚胺.利用FT-IR和1H NMR对PBAP和两种聚酰亚胺的结构进行测试分析,通过TGA和溶解性能测试对聚酰亚胺的性能进行分析.结果发现:通过共缩聚方法在聚酰亚胺分子链中引入柔性的醚键、大的苯环侧基和芳香杂环,使其在保持良好的热稳定性(在N2中的T10%为569.5℃)的同时,可进一步提高聚合物的溶解性能,使其具有一定的加工使用性能.  相似文献   

14.
以9,9-双(3-氟-4-氨基苯基)芴和4,4 (六氟异丙烯)二酞酸酐为单体合成含芴聚酰亚胺(FFDA-6FDA), 并采用Fourier变换红外光谱(FT-IR)、 核磁共振氢谱(1H NMR)对其结构进行表征. 实验结果表明: FFDA-6FDA的结构与预期结果相同, 单体间酰亚胺化反应完全; 室温下FFDA-6FDA在多种常规有机溶剂中溶解性良好; FFDA-6FDA具有较高的热稳定性能, 其玻璃化转变温度为370 ℃, 氮气中10%热失重温度为582 ℃, 800 ℃的热残留率大于61%; FFDA-6FDA薄膜具有较好的光学透明性, 截断波长为294 nm.  相似文献   

15.
本文合成了双马来酰亚胺和烯丙基醚化酚醛树脂的二元共聚物,并利用红外光谱(FT-IR)对共聚物的结构进行表征,利用TGA测试手段对共聚物的热学性能进行测试,结果表明,共聚物的热性能与纯酚醛树脂相比得到不同程度地提高,而液晶双马来酰亚胺共聚物体系较二苯甲烷型双马来酰亚胺共聚物体系具有更好的耐热性.  相似文献   

16.
以双酚AF、1,4-二(4′-氟苯酰基)苯或1,3-二(4′-氟苯酰基)苯为单体,通过亲核取代反应缩聚合成了2种新型含氟聚芳醚酮,由此显著改善了加工性能。采用FT-IR、1H-NMR、GPC、DSC、TGA等方法对聚合物的结构和性能进行了分析和表征。研究了聚合物的热性能、溶解性、材料拉伸性和介电性。结果表明:2种聚芳醚酮均具有较高的分子量(Mn>6.24×104);玻璃化转变温度Tg分别为174℃和162℃,空气中失重5%的温度分别为525℃和507℃;室温下在N-甲基吡咯烷酮(NMP)、二甲基乙酰胺(DMAc)、四氢呋喃(THF)等有机溶剂中均有良好的溶解性,并且可浇铸成有韧性的透明薄膜,薄膜的拉伸强度分别为98 MPa和93 MPa。1 MHz下薄膜的介电常数分别是2.85和2.94。  相似文献   

17.
将二胺单体1,3 双(4 氨基苯氧基)苯(1,3,4-APB)、3,4 二氨基二苯醚(3,4-ODA)分别与3,3′,4,4′-联苯四酸二酐(s-BPDA)和1,4,5,8 萘四甲酸二酐(NTDA)进行缩聚反应,并在两种不同合成条件下合成三种苯乙炔苯酐(PEPA)封端的聚酰亚胺低聚(PI1、PI2、PI3)。结果表明,含六元酸酐环的NTDA与二胺反应不仅形成酰亚胺结构,而且还形成异酰亚胺结构,并且酸性条件下更有利于酰亚胺结构的形成。这三种以苯乙炔苯酐封端的低聚物均具有良好的加工性能和热性能,有很宽的加工窗口,5%热失重温度均5300℃以上。萘环的引入使低聚物固化前后的玻璃化转变温度均有所提高,但也使得低聚物黏度上升。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号