首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
文章以活塞环-缸套摩擦副为研究对象,基于雷诺方程和能量方程,考虑了润滑油的粘温效应,对液固二相流体润滑状态下的流体压力进行计算和分析,探讨了不同工作状态下温度对压力所带来的影响。另外,针对颗粒的存在所引起的润滑油粘度变化,讨论了润滑油中的颗粒对流体压力所带来的影响,从理论上对液固二相流体润滑状态下的活塞环-缸套摩擦副的润滑特性进行分析和研究。  相似文献   

2.
建立以水分子为基础液、中空SiO2纳米颗粒为悬浮粒子的纳米流体模型,采用分子动力学模拟方法研究中空SiO2纳米颗粒在水中的运动特性.结果表明,纳米颗粒在水中首先进行无规则运动,随后相互靠近、黏结,最后达到相对平衡.水分子的加入可以延缓纳米颗粒的团聚,但不足以形成稳定的纳米流体.纳米流体中纳米颗粒间相互作用能为-632 ...  相似文献   

3.
研究了添加不同性质、不同体积浓度的纳米颗粒后对液体池内泡状沸腾换热的影响和相应的物理机制,并对3种不同体积浓度的Fe及A l2O3纳米流体进行了池内沸腾的实验研究.分析表明:纳米颗粒的加入,将增加液体的有效导热系数和粘度,降低基液的表面张力;另一方面,由于部分纳米颗粒会在加热表面形成沉积,改变了加热表面活化凹坑的尺度及分布,从而对成核和气泡成长过程产生影响.因此,纳米流体池内泡状沸腾传热强化与否,是多种因素综合作用的结果.实验结果证实了上述分析.根据“对流汽化”模型给出了去离子水与体积分数为2?纳米流体沸腾换热关系式,与实验值符合较好.  相似文献   

4.
研究了一种采用纳米流体直接吸收太阳辐射的聚光型中温集热器.建立了纳米流体集热过程能量传递和聚光器辐射热流分布的数学模型,测试了添加不同质量分数纳米颗粒的Cu O-导热油纳米流体的吸光系数,进而对非均匀聚光条件下纳米流体直接吸收式集热器(NDASC)特性进行了CFD模拟.分析了40~150℃范围内不同纳米颗粒质量分数对NDASC管内温度分布和集热效率的影响规律.结果表明:NDASC集热管周向温差明显低于传统间接吸收式集热器,但随着纳米颗粒质量分数的提高,纳米流体吸光系数增大,管内温度分布的不均匀性加剧;集热效率则随纳米颗粒质量分数的增大呈现先升后降的趋势,得出了集热性能最佳的纳米颗粒质量分数范围.  相似文献   

5.
为探究多壁碳纳米管芒硝基纳米流体相变材料的温度、多壁碳纳米管体积分数对芒硝基纳米流体相变材料黏度的影响,文中对多壁碳纳米管进行改性并对芒硝基纳米流体相变材料在不同温度及不同体积分数下的流变特性进行研究.结果 表明:30℃和50℃条件下,多壁碳纳米管体积分数从0.05%增加到0.25%时,芒硝基纳米流体相变材料黏度增幅分...  相似文献   

6.
将还原氧化石墨烯和碳纳米管亲油改性后获得的改性还原氧化石墨烯(Modified Reduced Graphene Oxide,MR-GO)和改性碳纳米管(Modified Carbon Nanotubes,M-CNT),经复配后分别加入基础脂中.选用红外光谱仪等设备表征了纳米粒子改性结果,采用球盘式摩擦试验和四球试验测试了样品的摩擦性能,发现亲油改性能降低碳纳米添加剂对润滑的负面影响.研究表明,MR-GO和M-CNT复配的润滑脂具有较好的减摩性能,扫描电镜微观形貌观察表明,MR-GO和M-CNT均能改善摩擦表面的粗糙程度,在2种添加剂协作下,摩擦表面的自动修复作用更完善,使磨损面粗糙程度降低,摩擦表面平均摩擦因数更低且随摩擦时长的增加更平稳,形成了一种稳定可持续的润滑机制.  相似文献   

7.
为研究超薄润滑膜的摩擦特性和添加剂的影响 ,采用自制的表面力仪进行了润滑剂基础油和油性添加剂的薄膜流变实验。结果表明 :当膜厚减薄到纳米量级时 ,润滑油呈现非牛顿剪切响应 ,即剪切稀释现象 ,其等效粘度随着膜厚变薄而增加 ,并在某个临界膜厚处急剧上升。加入添加剂后 ,润滑油等效粘度降低 ,临界膜厚变小 ,说明薄膜流变特性与界面的摩擦状况有关。指出油性添加剂的功能在于形成摩擦系数小但厚度较薄的吸附层 ,与界于壁面间的润滑流体构成夹层结构 ,从而较好地解释了实验规律  相似文献   

8.
纳米磁性流体是诞生于 2 0世纪 60年代末的一种新型的液体功能材料 ,是一种纳米铁磁性微粒在表面活性剂的包覆下 ,稳定地分散在载液中而形成的一种胶体 .介绍了它的磁性、黏度特性、蒸发特性和温度特性等几种主要性质、典型的制备技术以及它在密封、润滑、阻尼、研磨、印刷、医学等方面的应用和发展 ,并提出了值得重视的研究领域以及对纳米磁性流体研究的几点建议 .  相似文献   

9.
为了研究滑动速度对织构化摩擦副的润滑状态的影响,采用Nd:YAG固体脉冲激光对GCr15钢盘表面进行织构化处理,形成直径约150μm、深度约30~40μm的环形排列的微孔。在摩擦试验机上对Al_2O_3陶瓷球/GCr15钢盘进行摩擦学性能测试,并基于Stribeck曲线和弹流理论研究滑动速度对织构化表面润滑状态的影响。研究结果表明:在油润滑条件下,试样的摩擦因数随滑动速度的增大而减小。当滑动速度大于2 m/s,润滑状态从混合润滑逐渐进入到流体润滑区域;而经过织构化处理的配副能在较低的速度下实现由混合润滑向流体润滑状态过渡。根据磨损形貌比对可以看出:在流体润滑状态下,织构可以增加摩擦配副间的润滑膜厚度,使流体产生额外动压,提高油膜承载能力,减少磨痕宽度。  相似文献   

10.
一、边界润滑概述 为了减小机器运行给零件带来的磨损,提高零件的使用寿命,常常在机器中使用润滑油或者润滑脂进行润滑。润滑的机理主要是在摩擦表面之间形成具有法向承载能力的润滑膜,而根据润滑膜特征的差异,润滑状态通常可以分为流体动压润滑,流体静压润滑,弹性流体动压润滑,薄膜润滑和边界润滑。  相似文献   

11.
为了分析含磷添加剂在植物油中的摩擦学性能,选择磷酸三丁酯(TBP)和磷酸三苯酯(TPP)作为植物油添加剂,利用四球机对比法进行了摩擦磨损试验。分析了植物油与含磷添加剂之间的作用机理,含上述添加剂的植物油在摩擦过程中发生了摩擦化学反应,生成了由甘油脂和摩擦化学反应产物组成的边界润滑膜,从而改善植物油的摩擦学性能。结果表明,TBP和TPP能明显改善植物油的抗磨性,并有效提高植物油的承载能力。  相似文献   

12.
润滑分子特性对纳米级流体膜失效的影响   总被引:2,自引:0,他引:2  
为研究 nm级流体膜的失效情况 ,采用 NGY- 2型nm级膜厚测量仪 ,根据光干涉相对光强原理 ,对纯滚动点接触的中心区进行润滑膜厚度测量。观察不同载荷和速度下纯烷烃及加入少量酸时的流体膜厚度的变化情况 ,考察流体效应膜的失效情况。实验表明 :使用烷烃作润滑剂时 ,当压力增至某一定值时有一个临界点 ,当速度低于此点时 ,膜厚剧减 ,此时润滑膜不再具有流体特征 ,此点是润滑膜失效点 ,它与压力、速度、润滑剂的粘度以及分子极性有关。加入少量极性添加剂后所形成的润滑膜可承受较大的载荷 ,并能确保nm级流体膜不失效 ;在较高压力下 ,要在接触区形成流体膜就必须施加更高的速度或使用较大粘度的润滑剂 ;极性添加物的加入能提高流体膜的承载能力  相似文献   

13.
To develop a potential substitute for sulfurized olefins, a borate ester derivative containing xanthate group (titled BXT) was synthesized and characterized. Meanwhile, its tribological properties in rape-seed oil were evaluated using four-ball tribometer. The results indicate that BXT shows excellent tri- bological capacity such as load-carrying, friction-reducing and antiwear property. Moreover, the synthesized compound has no noticeable odor, shows little corrosion to copper, and exhibits better thermal stability compared with sulfurized olefins. In order to study the action mechanism of BXT in friction process, analysis of the worn surface was carried out using a three-dimensional non-contact surface profilometer and XPS analyzer.  相似文献   

14.
含片状纳米石墨粒子润滑油的制备及其摩擦学行为   总被引:5,自引:0,他引:5  
通过湿法化学研磨方法制备了纳米石墨滤饼,并通过相转移方法移入润滑油中。获得了分散稳定性良好的纳米石墨润滑油。使用四球摩擦磨损试验机研究了抗磨性、承载能力、摩擦系数,通过扫描电镜对磨斑的形貌进行了观察,开初步探讨了纳米石墨减摩机理。研究表明在392N的负荷下,在基础油中加入纳米石墨颗粒时,其磨斑直径可由0.52mm下降至0.46mm,摩擦系数由0.0867下降至0.0612,承载能力基本保持不变,认为其中纳米石墨粒子在摩擦面之间所形成的石墨层起到了抗磨减摩作用,所以含有超细石墨颗粒的润滑油具有良好的摩擦学性能。  相似文献   

15.
运用多相流混合模型和单相流模型模拟了纳米流体在封闭腔体内的自然对流换热特性,将模拟结果与相应的实验值进行对比,分析了瑞利数、格拉晓夫数和纳米颗粒体积分数等物理量与努塞尔数的关系;同时,对比分析了纳米流体和纯水在水平与垂直中心截面的速度分布,以及封闭腔体内流体的温度场及流场.结果表明:基于N-S方程的单相流模型所得努塞尔数变化曲线与水的努塞尔数曲线较吻合,但不能反应纳米流体的换热特性;而基于多相流混合模型所得努塞尔数变化曲线与相应的实验结果较吻合;纳米颗粒的添加能够显著增强封闭腔体内的流体运动,有利于强化封闭腔体内流体的能量传输,起到了对流换热作用.  相似文献   

16.
Series of triazine derivatives, 2,4-bi-alkoxy-6-(O,O‘-dialkyldithiophosphate)-s-1,3,5-triazine, were synthesized. Their tribological properties as lubricating oil additives in vegetable oil were evaluated using a four-ball tester. The results show that these triazine derivatives possess extreme pressure capacity, and they can improve antiwear and friction-reducing performance of base stock. The elements chemical states of the worn surface were estimated through X-ray photoelectron spectroscopy (XPS) and scanning electron microscope (SEM). The results show that a protective film containing sulphide, phosphate and some organic nitrogen compounds was formed on the worn surface during the lubrication process, and the film possesses extreme pressure and antiwear properties.  相似文献   

17.
根据流固吸附特性和分子间能量的变化规律来确定表面流、固体相互作用的程度,对表面吸附性能和吸附层进行描述,得出以能量表示的吸附层厚度表达式;从而确定描述表面粘度变化计算的表达式中的重要参数-吸附层厚度,粘度描述是润滑工程领域研究的基础.本文的研究适用于以流体膜为基础进行工作的研究,是纳米级润滑理论研究必须解决的问题之一.  相似文献   

18.
超薄膜润滑的分子动力学模拟   总被引:3,自引:0,他引:3  
超薄膜(膜厚趋于分子量级)的摩擦特性与宏观流体膜有很大的不同,与超薄膜的微观结构有密切的关系。本文应用可以同时模拟超薄膜宏观和微观特性的分子动力学模拟(MDS)方法,研究了超薄膜的微观结构与摩擦学特性间的关系,发现了平行于壁面的层状类固态结构;固液作用强度及膜厚大小对类固态结构有着明显的影响;超薄膜的极限膜厚由类固态与液相的比例决定。这种微观结构的相变改变了超薄膜的摩擦学特性。模拟中还发现了剪切诱导的微观构型。  相似文献   

19.
建立了描述纳米流体流动与传热过程的格子-Boltzmann模型,针对格子-Boltzmann方法(LBM)高度并行性的特点,用消息传递机制实现了平板间纳米流体流动与传热过程的LBM并行计算,分析了处理器数目与区域分解模式对计算效率的影响。结果表明,纳米粒子的微运动强化了流体与壁面以及流体内部的换热过程,LBM并行计算方法应用于纳米流体流动传热计算能够提高计算效率。  相似文献   

20.
基于Fokker-Planck方程与流体动量方程,建立了压力驱动纳米流体在园管中输运的两相流藕合理论模型,模型考虑了纳米粒子的相互碰撞效应、布朗运动效应以及纳米粒子与液体的相互耦合作用,本文所建立的模型没有引入任何唯象参数,与以往的唯象模型相比较,理论上更完备,采用该模型对纳米流体的黏度随温度、纳米粒子体积分数以及粒子尺度的变化规律进行了预测,结果表明,在高粒子体积分数下,纳米流体剖面速度分布呈"柱塞"状,这与单相流体剖面速度呈抛物线分布有明显的差异,该模型预测的黏度在较大范围内均与实验结果很好的吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号