首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
The nuclear receptor LXR is a glucose sensor   总被引:2,自引:0,他引:2  
Mitro N  Mak PA  Vargas L  Godio C  Hampton E  Molteni V  Kreusch A  Saez E 《Nature》2007,445(7124):219-223
  相似文献   

2.
Abel ED  Peroni O  Kim JK  Kim YB  Boss O  Hadro E  Minnemann T  Shulman GI  Kahn BB 《Nature》2001,409(6821):729-733
The earliest defect in developing type 2 diabetes is insulin resistance, characterized by decreased glucose transport and metabolism in muscle and adipocytes. The glucose transporter GLUT4 mediates insulin-stimulated glucose uptake in adipocytes and muscle by rapidly moving from intracellular storage sites to the plasma membrane. In insulin-resistant states such as obesity and type 2 diabetes, GLUT4 expression is decreased in adipose tissue but preserved in muscle. Because skeletal muscle is the main site of insulin-stimulated glucose uptake, the role of adipose tissue GLUT4 downregulation in the pathogenesis of insulin resistance and diabetes is unclear. To determine the role of adipose GLUT4 in glucose homeostasis, we used Cre/loxP DNA recombination to generate mice with adipose-selective reduction of GLUT4 (G4A-/-). Here we show that these mice have normal growth and adipose mass despite markedly impaired insulin-stimulated glucose uptake in adipocytes. Although GLUT4 expression is preserved in muscle, these mice develop insulin resistance in muscle and liver, manifested by decreased biological responses and impaired activation of phosphoinositide-3-OH kinase. G4A-/- mice develop glucose intolerance and hyperinsulinaemia. Thus, downregulation of GLUT4 and glucose transport selectively in adipose tissue can cause insulin resistance and thereby increase the risk of developing diabetes.  相似文献   

3.
4.
5.
In obesity and type 2 diabetes, expression of the GLUT4 glucose transporter is decreased selectively in adipocytes. Adipose-specific Glut4 (also known as Slc2a4) knockout (adipose-Glut4(-/-)) mice show insulin resistance secondarily in muscle and liver. Here we show, using DNA arrays, that expression of retinol binding protein-4 (RBP4) is elevated in adipose tissue of adipose-Glut4(-/-) mice. We show that serum RBP4 levels are elevated in insulin-resistant mice and humans with obesity and type 2 diabetes. RBP4 levels are normalized by rosiglitazone, an insulin-sensitizing drug. Transgenic overexpression of human RBP4 or injection of recombinant RBP4 in normal mice causes insulin resistance. Conversely, genetic deletion of Rbp4 enhances insulin sensitivity. Fenretinide, a synthetic retinoid that increases urinary excretion of RBP4, normalizes serum RBP4 levels and improves insulin resistance and glucose intolerance in mice with obesity induced by a high-fat diet. Increasing serum RBP4 induces hepatic expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) and impairs insulin signalling in muscle. Thus, RBP4 is an adipocyte-derived 'signal' that may contribute to the pathogenesis of type 2 diabetes. Lowering RBP4 could be a new strategy for treating type 2 diabetes.  相似文献   

6.
New drug targets for type 2 diabetes and the metabolic syndrome.   总被引:45,自引:0,他引:45  
D E Moller 《Nature》2001,414(6865):821-827
An insidious increase in features of the 'metabolic syndrome' - obesity, insulin resistance and dyslipidaemia -- has conspired to produce a worldwide epidemic of type 2 insulin-resistant diabetes mellitus. Most current therapies for this disease were developed in the absence of defined molecular targets or an understanding of disease pathogenesis. Emerging knowledge of key pathogenic mechanisms, such as the impairment of glucose-stimulated insulin secretion and the role of 'lipotoxicity' as a probable cause of hepatic and muscle resistance to insulin's effects on glucose metabolism, has led to a host of new molecular drug targets. Several have been validated through genetic engineering in mice or the preliminary use of lead compounds and therapeutic agents in animals and humans.  相似文献   

7.
部分水解瓜尔豆胶(partially hydrolyzed guar gum,PHGG)是一种有益于代谢平衡的可溶性膳食纤维,但其对糖脂代谢紊乱的调节效果及其潜在机制尚不明确。利用高脂高糖饮食诱导小鼠16周,使其产生明显的脂代谢紊乱和胰岛素抵抗,进一步通过检测小鼠糖耐量、血清生化指标、脂肪形态、肠道短链脂肪酸及相关mRNA的表达,考察PHGG对模型小鼠的糖脂代谢稳态及肠道环境的调节作用。结果表明:长期高脂高糖饮食条件下,PHGG组小鼠比模型组小鼠的体质量增长率减缓,空腹血糖降低,葡萄糖耐量和胰岛素耐量显著提升;血清中的甘油三酯、总胆固醇、低密度脂蛋白胆固醇和游离脂肪酸可分别降低21.56%、32.67%、25.66%和22.91%,明显抑制了脂肪积累。PHGG将肠道胰高血糖素样肽-1的分泌提升并恢复到67.76pmol/L,盲肠中的丁酸含量比模型组提升了7.14倍。定量PCR显示,PHGG干预后小鼠短链脂肪酸受体GPR43的蛋白表达水平比模型组提升了63.30%。本研究表明,PHGG通过调节短链脂肪酸影响脂联素、胰岛素的分泌,进而改善高脂高糖饮食引起的糖脂代谢紊乱,可以应用于辅助糖脂代谢调控的功能性食品开发中。  相似文献   

8.
9.
Congenital generalized lipodystrophy (CGL) is a rare autosomal recessive disorder characterized by a paucity of adipose (fat) tissue which is evident at birth and is accompanied by a severe resistance to insulin, leading to hyperinsulinaemia, hyperglycaemia and enlarged fatty liver. We have developed a mouse model that mimics these features of CGL: the syndrome occurs in transgenic mice expressing a truncated version of a nuclear protein known as nSREBP-1c (for sterol-regulatory-element-binding protein-1c) under the control of the adipose-specific aP2 enhancer. Adipose tissue from these mice was markedly deficient in messenger RNAs encoding several fat-specific proteins, including leptin, a fat-derived hormone that regulates food intake and energy metabolism. Here we show that insulin resistance in our lipodystrophic mice can be overcome by a continuous systemic infusion of low doses of recombinant leptin, an effect that is not mimicked by chronic food restriction. Our results support the idea that leptin modulates insulin sensitivity and glucose disposal independently of its effect on food intake, and that leptin deficiency accounts for the insulin resistance found in CGL.  相似文献   

10.
11.
Obesity is the driving force behind the worldwide increase in the prevalence of type 2 diabetes mellitus. Hyperglycaemia is a hallmark of diabetes and is largely due to increased hepatic gluconeogenesis. The medial hypothalamus is a major integrator of nutritional and hormonal signals, which play pivotal roles not only in the regulation of energy balance but also in the modulation of liver glucose output. Bidirectional changes in hypothalamic insulin signalling therefore result in parallel changes in both energy balance and glucose metabolism. Here we show that activation of ATP-sensitive potassium (K(ATP)) channels in the mediobasal hypothalamus is sufficient to lower blood glucose levels through inhibition of hepatic gluconeogenesis. Finally, the infusion of a K(ATP) blocker within the mediobasal hypothalamus, or the surgical resection of the hepatic branch of the vagus nerve, negates the effects of central insulin and halves the effects of systemic insulin on hepatic glucose production. Consistent with these results, mice lacking the SUR1 subunit of the K(ATP) channel are resistant to the inhibitory action of insulin on gluconeogenesis. These findings suggest that activation of hypothalamic K(ATP) channels normally restrains hepatic gluconeogenesis, and that any alteration within this central nervous system/liver circuit can contribute to diabetic hyperglycaemia.  相似文献   

12.
Uncoupling protein-3 (UCP-3) is a recently identified member of the mitochondrial transporter superfamily that is expressed predominantly in skeletal muscle. However, its close relative UCP-1 is expressed exclusively in brown adipose tissue, a tissue whose main function is fat combustion and thermogenesis. Studies on the expression of UCP-3 in animals and humans in different physiological situations support a role for UCP-3 in energy balance and lipid metabolism. However, direct evidence for these roles is lacking. Here we describe the creation of transgenic mice that overexpress human UCP-3 in skeletal muscle. These mice are hyperphagic but weigh less than their wild-type littermates. Magnetic resonance imaging shows a striking reduction in adipose tissue mass. The mice also exhibit lower fasting plasma glucose and insulin levels and an increased glucose clearance rate. This provides evidence that skeletal muscle UCP-3 has the potential to influence metabolic rate and glucose homeostasis in the whole animal.  相似文献   

13.
 核受体Rev-erbs是能量稳态调控的核心转录调节因子,其表达受饮食、药物、运动等因素的影响;Rev-erbs参与糖脂代谢、胰岛素分泌、血糖稳态调节等多个生物学过程,是肥胖症、糖尿病等慢性代谢性疾病治疗的重要药物靶标,通过调节糖脂代谢通路中的靶分子,调控组织的能量稳态。运动干预刺激肝脏、骨骼肌等组织中Rev-erbs表达,调控糖脂代谢基因,维持细胞能量稳态,可能是慢性病运动干预的重要适应机制。简述了Rev-erbs的结构特点、表达调控因素与作用机制,分析了运动干预对Rev-erbs表达的影响与代谢调控机制,以及Rev-erbs在运动科学领域的国际前沿和发展趋势。  相似文献   

14.
G proteins are an important class of regulatory switches in all living systems. They are activated by guanine nucleotide exchange factors (GEFs), which facilitate the exchange of GDP for GTP. This activity makes GEFs attractive targets for modulating disease-relevant G-protein-controlled signalling networks. GEF inhibitors are therefore of interest as tools for elucidating the function of these proteins and for therapeutic intervention; however, only one small molecule GEF inhibitor, brefeldin A (BFA), is currently available. Here we used an aptamer displacement screen to identify SecinH3, a small molecule antagonist of cytohesins. The cytohesins are a class of BFA-resistant small GEFs for ADP-ribosylation factors (ARFs), which regulate cytoskeletal organization, integrin activation or integrin signalling. The application of SecinH3 in human liver cells showed that insulin-receptor-complex-associated cytohesins are required for insulin signalling. SecinH3-treated mice show increased expression of gluconeogenic genes, reduced expression of glycolytic, fatty acid and ketone body metabolism genes in the liver, reduced liver glycogen stores, and a compensatory increase in plasma insulin. Thus, cytohesin inhibition results in hepatic insulin resistance. Because insulin resistance is among the earliest pathological changes in type 2 diabetes, our results show the potential of chemical biology for dissecting the molecular pathogenesis of this disease.  相似文献   

15.
Liu C  Li S  Liu T  Borjigin J  Lin JD 《Nature》2007,447(7143):477-481
  相似文献   

16.
目的探讨高脂饮食对法尼醇受体(farnesoid X receptor,FXR)敲除小鼠糖脂代谢及肝脏脂肪变性的影响。方法正常饮食(normal diet,ND)组:C57BL/6(wild type,WT)小鼠(n=6)和FXR -/- 小鼠(n=6)给予辐照灭菌维持饲料喂养12周。高脂饮食(high fat diet,HFD)组:C57BL/6小鼠(n=6)和FXR -/- 小鼠(n=6)给予45%高脂饲料喂养12周。小鼠处死后全自动生化分析仪检测血清总胆固醇(total cholesterol,TC)、甘油三酯(triglyceride,TG)、低密度脂蛋白胆固醇(low density lipoprotein cholesterol,LDL-C)、高密度脂蛋白胆固醇(High density lipoprotein cholesterol,HDL-C)、谷丙转氨酶(alanine aminotransferase,ALT)、谷草转氨酶(aspartate aminotransferase,AST)和总胆汁酸(total bile acid,TBA)指标; RT-PCR检测肝脏炎症因子TNF-α、TLR4和FXR下游基因小分子异源二聚体(small heterodimer partner,SHP)、胆固醇7α-羟化酶(cholesterol 7α-hydroxylase,CYP7A1)的相对表达量; HE染色观察肝脏脂肪变性情况。结果高脂饮食喂养条件下,C57BL/6小鼠和FXR -/- 小鼠体质量变化无差异,但相比C57BL/6小鼠,FXR -/- 小鼠表现出更为严重糖耐量受损(P <0. 01)、脂质代谢紊乱(P <0. 01)、血清胆汁酸增高(P <0. 01)、肝脏炎症(P <0. 01)和肝脏脂肪变性。结论 FXR的缺失引起小鼠糖脂代谢紊乱、胆汁酸代谢异常、肝脏脂肪变性,但这种改变需要高脂饮食的诱导。  相似文献   

17.
18.
Sekiya S  Suzuki A 《Nature》2011,475(7356):390-393
  相似文献   

19.
MicroRNAs 103 and 107 regulate insulin sensitivity   总被引:2,自引:0,他引:2  
Defects in insulin signalling are among the most common and earliest defects that predispose an individual to the development of type 2 diabetes. MicroRNAs have been identified as a new class of regulatory molecules that influence many biological functions, including metabolism. However, the direct regulation of insulin sensitivity by microRNAs in vivo has not been demonstrated. Here we show that the expression of microRNAs 103 and 107 (miR-103/107) is upregulated in obese mice. Silencing of miR-103/107 leads to improved glucose homeostasis and insulin sensitivity. In contrast, gain of miR-103/107 function in either liver or fat is sufficient to induce impaired glucose homeostasis. We identify caveolin-1, a critical regulator of the insulin receptor, as a direct target gene of miR-103/107. We demonstrate that caveolin-1 is upregulated upon miR-103/107 inactivation in adipocytes and that this is concomitant with stabilization of the insulin receptor, enhanced insulin signalling, decreased adipocyte size and enhanced insulin-stimulated glucose uptake. These findings demonstrate the central importance of miR-103/107 to insulin sensitivity and identify a new target for the treatment of type 2 diabetes and obesity.  相似文献   

20.
Lee JM  Lee YK  Mamrosh JL  Busby SA  Griffin PR  Pathak MC  Ortlund EA  Moore DD 《Nature》2011,474(7352):506-510
Nuclear hormone receptors regulate diverse metabolic pathways and the orphan nuclear receptor LRH-1 (also known as NR5A2) regulates bile acid biosynthesis. Structural studies have identified phospholipids as potential LRH-1 ligands, but their functional relevance is unclear. Here we show that an unusual phosphatidylcholine species with two saturated 12 carbon fatty acid acyl side chains (dilauroyl phosphatidylcholine (DLPC)) is an LRH-1 agonist ligand in vitro. DLPC treatment induces bile acid biosynthetic enzymes in mouse liver, increases bile acid levels, and lowers hepatic triglycerides and serum glucose. DLPC treatment also decreases hepatic steatosis and improves glucose homeostasis in two mouse models of insulin resistance. Both the antidiabetic and lipotropic effects are lost in liver-specific Lrh-1 knockouts. These findings identify an LRH-1 dependent phosphatidylcholine signalling pathway that regulates bile acid metabolism and glucose homeostasis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号