首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A plant receptor-like kinase required for both bacterial and fungal symbiosis   总被引:63,自引:0,他引:63  
Most higher plant species can enter a root symbiosis with arbuscular mycorrhizal fungi, in which plant carbon is traded for fungal phosphate. This is an ancient symbiosis, which has been detected in fossils of early land plants. In contrast, the nitrogen-fixing root nodule symbioses of plants with bacteria evolved more recently, and are phylogenetically restricted to the rosid I clade of plants. Both symbioses rely on partially overlapping genetic programmes. We have identified the molecular basis for this convergence by cloning orthologous SYMRK ('symbiosis receptor-like kinase') genes from Lotus and pea, which are required for both fungal and bacterial recognition. SYMRK is predicted to have a signal peptide, an extracellular domain comprising leucine-rich repeats, a transmembrane and an intracellular protein kinase domain. Lotus SYMRK is required for a symbiotic signal transduction pathway leading from the perception of microbial signal molecules to rapid symbiosis-related gene activation. The perception of symbiotic fungi and bacteria is mediated by at least one common signalling component, which could have been recruited during the evolution of root nodule symbioses from the already existing arbuscular mycorrhiza symbiosis.  相似文献   

2.
A phosphate transporter expressed in arbuscule-containing cells in potato.   总被引:34,自引:0,他引:34  
C Rausch  P Daram  S Brunner  J Jansa  M Laloi  G Leggewie  N Amrhein  M Bucher 《Nature》2001,414(6862):462-470
Arbuscular mycorrhizas are the most common non-pathogenic symbioses in the roots of plants. It is generally assumed that this symbiosis facilitated the colonization of land by plants. In arbuscular mycorrhizas, fungal hyphae often extend between the root cells and tuft-like branched structures (arbuscules) form within the cell lumina that act as the functional interface for nutrient exchange. In the mutualistic arbuscular-mycorrhizal symbiosis the host plant derives mainly phosphorus from the fungus, which in turn benefits from plant-based glucose. The molecular basis of the establishment and functioning of the arbuscular-mycorrhizal symbiosis is largely not understood. Here we identify the phosphate transporter gene StPT3 in potato (Solanum tuberosum). Functionality of the encoded protein was confirmed by yeast complementation. RNA localization and reporter gene expression indicated expression of StPT3 in root sectors where mycorrhizal structures are formed. A sequence motif in the StPT3 promoter is similar to transposon-like elements, suggesting that the mutualistic symbiosis evolved by genetic rearrangements in the StPT3 promoter.  相似文献   

3.
Amino-acid cycling drives nitrogen fixation in the legume-Rhizobium symbiosis   总被引:14,自引:0,他引:14  
The biological reduction of atmospheric N2 to ammonium (nitrogen fixation) provides about 65% of the biosphere's available nitrogen. Most of this ammonium is contributed by legume-rhizobia symbioses, which are initiated by the infection of legume hosts by bacteria (rhizobia), resulting in formation of root nodules. Within the nodules, rhizobia are found as bacteroids, which perform the nitrogen fixation: to do this, they obtain sources of carbon and energy from the plant, in the form of dicarboxylic acids. It has been thought that, in return, bacteroids simply provide the plant with ammonium. But here we show that a more complex amino-acid cycle is essential for symbiotic nitrogen fixation by Rhizobium in pea nodules. The plant provides amino acids to the bacteroids, enabling them to shut down their ammonium assimilation. In return, bacteroids act like plant organelles to cycle amino acids back to the plant for asparagine synthesis. The mutual dependence of this exchange prevents the symbiosis being dominated by the plant, and provides a selective pressure for the evolution of mutualism.  相似文献   

4.
Hodge A  Campbell CD  Fitter AH 《Nature》2001,413(6853):297-299
Arbuscular mycorrhizal fungi (order Glomales), which form mycorrhizal symbioses with two out of three of all plant species, are believed to be obligate biotrophs that are wholly dependent on the plant partner for their carbon supply. It is thought that they possess no degradative capability and that they are unable to decompose complex organic molecules, the form in which most soil nutrients occur. Earlier suggestions that they could exist saprotrophically were based on observation of hyphal proliferation on organic materials. In contrast, other mycorrhizal types have been shown to acquire nitrogen directly from organic sources. Here we show that the arbuscular mycorrhizal symbiosis can both enhance decomposition of and increase nitrogen capture from complex organic material (grass leaves) in soil. Hyphal growth of the fungal partner was increased in the presence of the organic material, independently of the host plant.  相似文献   

5.
微生物共生普遍存在于自然界中,真菌-细菌联合体能以多种方式相互作用,共同发挥各种生态功能。有些细菌驻留在真菌菌丝内部,借以调控真菌的生长、发育、分布和次级代谢过程,这些细菌被称为菌丝内生细菌(endohyphal bacteria, EHB)。EHB的研究揭开了微生物生态学的一个新篇章,是真菌与细菌共生关系中最紧密的代表。在逆境条件下,EHB可以调节寄主生殖机制相关的关键成分或步骤,诱导植物激素类物质的产生,对寄主真菌具有辅助性保护作用。研究最深入的真菌-EHB共生体系是植物致病性根霉菌Rhizopus sp.与伯克霍尔德氏菌Burkholderia sp.,引起水稻幼苗枯萎病所必需的植物毒素——根霉素是由伯克霍尔德氏菌所产生的,而非寄主根霉菌本身产生的。EHB也会影响定殖于高等植物的内生真菌的生态和多样性。在某些情况下,EHB还有助于激活参与识别、转录调节和初级代谢蛋白合成过程的相关基因。目前已开发出了无菌培养分离EHB的方法,然而对真菌-EHB共生体系的研究尚不够深入。综述了菌丝内生细菌EHB及其与宿主真菌的共生体系,阐述这些伴侣之间复杂微妙的相互关系,以及EHB对宿主真菌和宿主植物生长和发育的影响,并对该领域的研究方向提出了建议。  相似文献   

6.
von Dohlen CD  Kohler S  Alsop ST  McManus WR 《Nature》2001,412(6845):433-436
Some insects have cultivated intimate relationships with mutualistic bacteria since their early evolutionary history. Most ancient 'primary' endosymbionts live within the cytoplasm of large, polyploid host cells of a specialized organ (bacteriome). Within their large, ovoid bacteriomes, mealybugs (Pseudococcidae) package the intracellular endosymbionts into 'mucus-filled' spheres, which surround the host cell nucleus and occupy most of the cytoplasm. The genesis of symbiotic spheres has not been determined, and they are structurally unlike eukaryotic cell vesicles. Recent molecular phylogenetic and fluorescent in situ hybridization (FISH) studies suggested that two unrelated bacterial species may share individual host cells, and that bacteria within spheres comprise these two species. Here we show that mealybug host cells do indeed harbour both beta- and gamma-subdivision Proteobacteria, but they are not co-inhabitants of the spheres. Rather, we show that the symbiotic spheres themselves are beta-proteobacterial cells. Thus, gamma-Proteobacteria live symbiotically inside beta-Proteobacteria. This is the first report, to our knowledge, of an intracellular symbiosis involving two species of bacteria.  相似文献   

7.
微生物共生普遍存在于自然界中,真菌-细菌联合体能以多种方式相互作用,共同发挥各种生态功能。有些细菌驻留在真菌菌丝内部,借以调控真菌的生长、发育、分布和次级代谢过程,这些细菌被称为菌丝内生细菌(endohyphal bacteria, EHB)。EHB的研究揭开了微生物生态学的一个新篇章,是真菌与细菌共生关系中最紧密的代表。在逆境条件下,EHB可以调节寄主生殖机制相关的关键成分或步骤,诱导植物激素类物质的产生,对寄主真菌具有辅助性保护作用。研究最深入的真菌-EHB共生体系是植物致病性根霉菌Rhizopus sp.与伯克霍尔德氏菌Burkholderia sp.,引起水稻幼苗枯萎病所必需的植物毒素——根霉素是由伯克霍尔德氏菌所产生的,而非寄主根霉菌本身产生的。EHB也会影响定殖于高等植物的内生真菌的生态和多样性。在某些情况下,EHB还有助于激活参与识别、转录调节和初级代谢蛋白合成过程的相关基因。目前已开发出了无菌培养分离EHB的方法,然而对真菌-EHB共生体系的研究尚不够深入。综述了菌丝内生细菌EHB及其与宿主真菌的共生体系,阐述这些伴侣之间复杂微妙的相互关系,以及EHB对宿主真菌和宿主植物生长和发育的影响,并对该领域的研究方向提出了建议。  相似文献   

8.
Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza   总被引:3,自引:0,他引:3  
Arbuscular mycorrhiza (AM) is a root endosymbiosis between plants and glomeromycete fungi. It is the most widespread terrestrial plant symbiosis, improving plant uptake of water and mineral nutrients. Yet, despite its crucial role in land ecosystems, molecular mechanisms leading to its formation are just beginning to be unravelled. Recent evidence suggests that AM fungi produce diffusible symbiotic signals. Here we show that Glomus intraradices secretes symbiotic signals that are a mixture of sulphated and non-sulphated simple lipochitooligosaccharides (LCOs), which stimulate formation of AM in plant species of diverse families (Fabaceae, Asteraceae and Umbelliferae). In the legume Medicago truncatula these signals stimulate root growth and branching by the symbiotic DMI signalling pathway. These findings provide a better understanding of the evolution of signalling mechanisms involved in plant root endosymbioses and will greatly facilitate their molecular dissection. They also open the way to using these natural and very active molecules in agriculture.  相似文献   

9.
A receptor kinase gene regulating symbiotic nodule development   总被引:65,自引:0,他引:65  
Endre G  Kereszt A  Kevei Z  Mihacea S  Kaló P  Kiss GB 《Nature》2002,417(6892):962-966
Leguminous plants are able to establish a nitrogen-fixing symbiosis with soil bacteria generally known as rhizobia. Metabolites exuded by the plant root activate the production of a rhizobial signal molecule, the Nod factor, which is essential for symbiotic nodule development. This lipo-chitooligosaccharide signal is active at femtomolar concentrations, and its structure is correlated with host specificity of symbiosis, suggesting the involvement of a cognate perception system in the plant host. Here we describe the cloning of a gene from Medicago sativa that is essential for Nod-factor perception in alfalfa, and by genetic analogy, in the related legumes Medicago truncatula and Pisum sativum. The identified 'nodulation receptor kinase', NORK, is predicted to function in the Nod-factor perception/transduction system (the NORK system) that initiates a signal cascade leading to nodulation. The family of 'NORK extracellular-sequence-like' (NSL) genes is broadly distributed in the plant kingdom, although their biological function has not been previously ascribed. We suggest that during the evolution of symbiosis an ancestral NSL system was co-opted for transduction of an external ligand, the rhizobial Nod factor, leading to development of the symbiotic root nodule.  相似文献   

10.
Hijri M  Sanders IR 《Nature》2005,433(7022):160-163
Arbuscular mycorrhizal fungi (AMF) are ancient asexually reproducing organisms that form symbioses with the majority of plant species, improving plant nutrition and promoting plant diversity. Little is known about the evolution or organization of the genomes of any eukaryotic symbiont or ancient asexual organism. Direct evidence shows that one AMF species is heterokaryotic; that is, containing populations of genetically different nuclei. It has been suggested, however, that the genetic variation passed from generation to generation in AMF is simply due to multiple chromosome sets (that is, high ploidy). Here we show that previously documented genetic variation in Pol-like sequences, which are passed from generation to generation, cannot be due to either high ploidy or repeated gene duplications. Our results provide the clearest evidence so far for substantial genetic differences among nuclei in AMF. We also show that even AMF with a very large nuclear DNA content are haploid. An underlying principle of evolutionary theory is that an individual passes on one or half of its genome to each of its progeny. The coexistence of a population of many genomes in AMF and their transfer to subsequent generations, therefore, has far-reaching consequences for understanding genome evolution.  相似文献   

11.
Hibbett DS  Gilbert LB  Donoghue MJ 《Nature》2000,407(6803):506-508
Mycorrhizae, the symbiotic associations of plant roots and fungal hyphae, are classic examples of mutualisms. In these ecologically important associations, the fungi derive photosynthetic sugars from their plant hosts, which in turn benefit from fungus-mediated uptake of mineral nutrients. Early views on the evolution of symbioses suggested that all long-term, intimate associations tend to evolve toward mutualism. Following this principle, it has been suggested that mycorrhizal symbioses are the stable derivatives of ancestral antagonistic interactions involving plant parasitic fungi. Alternatively, mutualisms have been interpreted as inherently unstable reciprocal parasitisms, which can be disrupted by conflicts of interest among the partners. To determine the number of origins of mycorrhizae, and to assess their evolutionary stability, it is necessary to understand the phylogenetic relationships of the taxa involved. Here we present a broad phylogenetic analysis of mycorrhizal and free-living homobasidiomycetes (mushroom-forming fungi). Our results indicate that mycorrhizal symbionts with diverse plant hosts have evolved repeatedly from saprotrophic precursors, but also that there have been multiple reversals to a free-living condition. These findings suggest that mycorrhizae are unstable, evolutionarily dynamic associations.  相似文献   

12.
Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.  相似文献   

13.
L Moulin  A Munive  B Dreyfus  C Boivin-Masson 《Nature》2001,411(6840):948-950
Members of the Leguminosae form the largest plant family on Earth, with around 18,000 species. The success of legumes can largely be attributed to their ability to form a nitrogen-fixing symbiosis with specific bacteria known as rhizobia, manifested by the development of nodules on the plant roots in which the bacteria fix atmospheric nitrogen, a major contributor to the global nitrogen cycle. Rhizobia described so far belong exclusively to the alpha-subclass of Proteobacteria, where they are distributed in four distinct phylogenetic branches. Although nitrogen-fixing bacteria exist in other proteobacterial subclasses, for example Herbaspirillum and Azoarcus from the phylogenetically distant beta-subclass, none has been found to harbour the nod genes essential for establishing rhizobial symbiosis. Here we report the identification of proteobacteria from the beta-subclass that nodulate legumes. This finding shows that the ability to establish a symbiosis with legumes is more widespread in bacteria than anticipated to date.  相似文献   

14.
Plants belonging to the legume family develop nitrogen-fixing root nodules in symbiosis with bacteria commonly known as rhizobia. The legume host encodes all of the functions necessary to build the specialized symbiotic organ, the nodule, but the process is elicited by the bacteria. Molecular communication initiates the interaction, and signals, usually flavones, secreted by the legume root induce the bacteria to produce a lipochitin-oligosaccharide signal molecule (Nod-factor), which in turn triggers the plant organogenic process. An important determinant of bacterial host specificity is the structure of the Nod-factor, suggesting that a plant receptor is involved in signal perception and signal transduction initiating the plant developmental response. Here we describe the cloning of a putative Nod-factor receptor kinase gene (NFR5) from Lotus japonicus. NFR5 is essential for Nod-factor perception and encodes an unusual transmembrane serine/threonine receptor-like kinase required for the earliest detectable plant responses to bacteria and Nod-factor. The extracellular domain of the putative receptor has three modules with similarity to LysM domains known from peptidoglycan-binding proteins and chitinases. Together with an atypical kinase domain structure this characterizes an unusual receptor-like kinase.  相似文献   

15.
The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis   总被引:4,自引:0,他引:4  
Mycorrhizal symbioses--the union of roots and soil fungi--are universal in terrestrial ecosystems and may have been fundamental to land colonization by plants. Boreal, temperate and montane forests all depend on ectomycorrhizae. Identification of the primary factors that regulate symbiotic development and metabolic activity will therefore open the door to understanding the role of ectomycorrhizae in plant development and physiology, allowing the full ecological significance of this symbiosis to be explored. Here we report the genome sequence of the ectomycorrhizal basidiomycete Laccaria bicolor (Fig. 1) and highlight gene sets involved in rhizosphere colonization and symbiosis. This 65-megabase genome assembly contains approximately 20,000 predicted protein-encoding genes and a very large number of transposons and repeated sequences. We detected unexpected genomic features, most notably a battery of effector-type small secreted proteins (SSPs) with unknown function, several of which are only expressed in symbiotic tissues. The most highly expressed SSP accumulates in the proliferating hyphae colonizing the host root. The ectomycorrhizae-specific SSPs probably have a decisive role in the establishment of the symbiosis. The unexpected observation that the genome of L. bicolor lacks carbohydrate-active enzymes involved in degradation of plant cell walls, but maintains the ability to degrade non-plant cell wall polysaccharides, reveals the dual saprotrophic and biotrophic lifestyle of the mycorrhizal fungus that enables it to grow within both soil and living plant roots. The predicted gene inventory of the L. bicolor genome, therefore, points to previously unknown mechanisms of symbiosis operating in biotrophic mycorrhizal fungi. The availability of this genome provides an unparalleled opportunity to develop a deeper understanding of the processes by which symbionts interact with plants within their ecosystem to perform vital functions in the carbon and nitrogen cycles that are fundamental to sustainable plant productivity.  相似文献   

16.
Hydrogen is an energy source for hydrothermal vent symbioses   总被引:1,自引:0,他引:1  
The discovery of deep-sea hydrothermal vents in 1977 revolutionized our understanding of the energy sources that fuel primary productivity on Earth. Hydrothermal vent ecosystems are dominated by animals that live in symbiosis with chemosynthetic bacteria. So far, only two energy sources have been shown to power chemosynthetic symbioses: reduced sulphur compounds and methane. Using metagenome sequencing, single-gene fluorescence in situ hybridization, immunohistochemistry, shipboard incubations and in situ mass spectrometry, we show here that the symbionts of the hydrothermal vent mussel Bathymodiolus from the Mid-Atlantic Ridge use hydrogen to power primary production. In addition, we show that the symbionts of Bathymodiolus mussels from Pacific vents have hupL, the key gene for hydrogen oxidation. Furthermore, the symbionts of other vent animals such as the tubeworm Riftia pachyptila and the shrimp Rimicaris exoculata also have hupL. We propose that the ability to use hydrogen as an energy source is widespread in hydrothermal vent symbioses, particularly at sites where hydrogen is abundant.  相似文献   

17.
Methanotrophic symbionts provide carbon for photosynthesis in peat bogs   总被引:2,自引:0,他引:2  
Wetlands are the largest natural source of atmospheric methane, the second most important greenhouse gas. Methane flux to the atmosphere depends strongly on the climate; however, by far the largest part of the methane formed in wetland ecosystems is recycled and does not reach the atmosphere. The biogeochemical controls on the efficient oxidation of methane are still poorly understood. Here we show that submerged Sphagnum mosses, the dominant plants in some of these habitats, consume methane through symbiosis with partly endophytic methanotrophic bacteria, leading to highly effective in situ methane recycling. Molecular probes revealed the presence of the bacteria in the hyaline cells of the plant and on stem leaves. Incubation with (13)C-methane showed rapid in situ oxidation by these bacteria to carbon dioxide, which was subsequently fixed by Sphagnum, as shown by incorporation of (13)C-methane into plant sterols. In this way, methane acts as a significant (10-15%) carbon source for Sphagnum. The symbiosis explains both the efficient recycling of methane and the high organic carbon burial in these wetland ecosystems.  相似文献   

18.
Primitive agriculture in a social amoeba   总被引:1,自引:0,他引:1  
Brock DA  Douglas TE  Queller DC  Strassmann JE 《Nature》2011,469(7330):393-396
Agriculture has been a large part of the ecological success of humans. A handful of animals, notably the fungus-growing ants, termites and ambrosia beetles, have advanced agriculture that involves dispersal and seeding of food propagules, cultivation of the crop and sustainable harvesting. More primitive examples, which could be called husbandry because they involve fewer adaptations, include marine snails farming intertidal fungi and damselfish farming algae. Recent work has shown that microorganisms are surprisingly like animals in having sophisticated behaviours such as cooperation, communication and recognition, as well as many kinds of symbiosis. Here we show that the social amoeba Dictyostelium discoideum has a primitive farming symbiosis that includes dispersal and prudent harvesting of the crop. About one-third of wild-collected clones engage in husbandry of bacteria. Instead of consuming all bacteria in their patch, they stop feeding early and incorporate bacteria into their fruiting bodies. They then carry bacteria during spore dispersal and can seed a new food crop, which is a major advantage if edible bacteria are lacking at the new site. However, if they arrive at sites already containing appropriate bacteria, the costs of early feeding cessation are not compensated for, which may account for the dichotomous nature of this farming symbiosis. The striking convergent evolution between bacterial husbandry in social amoebas and fungus farming in social insects makes sense because multigenerational benefits of farming go to already established kin groups.  相似文献   

19.
The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found on any plant root or plant debris in the tested soils. By contrast, colonization of Arabidopsis roots by members of the Actinobacteria depends on other cues from metabolically active host cells.  相似文献   

20.
 磷元素是植物生长必需的大量营养元素之一,土壤中磷素的固定现象严重,有效磷含量降低,影响植物的生长发育。解磷细菌能将基质中难溶性磷转化为可溶性磷,能够提高土壤中有效磷含量。通过玉米盆栽实验,比较不同菌株及其联合作用对土壤中难溶磷肥的释放及对植物生长的影响。结果表明,丛枝菌根与解磷细菌联合作用显著地提高了植物地上、地下的生物量,能够高效地释放出沙土中添加的难溶性磷肥,使土壤有效磷含量增加;沙土的pH值被提高到接近中性,使酸性磷酸酶活性升高,促进有机营养物质转化为无机物,更易被植物吸收利用;接种菌根可以显著提高根系的侵染率和菌丝密度,能够扩大根系的吸收面积,改善根际土壤的环境,达到促进植物生长的目的。利用丛枝菌根真菌和解磷细菌进行微生物复垦,对沙化贫瘠土地的生态修复具有重大意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号