首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
径流序列的相空间重构神经网络预测模型   总被引:5,自引:0,他引:5  
在水文水资源领域中引入混沌理论,将相空间重构理论与神经网络理论相结合,提出了径流时间序列预测模型.通过相空间重构,把一维径流时间序列拓展为多维序列,而多维序列可挖掘更为丰富的信息,有利于神经网络的训练.研究表明,利用神经网络建模可以较好地解决非线性问题,使预测更符合实际.以汉江石泉水库逐月平均入库径流序列为例,建立了径流时间序列相空间重构与神经网络耦合预测模型,计算结果表明,模型有较高的预测精度.  相似文献   

2.
利用奇异谱分析方法对股市时间序列重构,降低噪声并提取趋势序列,并利用C-C算法确定嵌入为维数和延迟阶数进行相空间重构,生成神经网络的学习矩阵,进一步利用Boosting技术和不同的神经网络模型,生成神经网络集成个体,最后采用非参数回归模型进行集成,建立多元变窗宽高斯核函数的非参数回归的神经网络集成模型,以此建立股市预测...  相似文献   

3.
基于相空间重构的神经网络短期风速预测   总被引:1,自引:0,他引:1  
针对风速具有较强的混沌特性,预测难度较大,提出了一种基于相空间重构的神经网络短期风速预测方法:对数据进行小波降噪,运用互信息法和虚假最近邻点法确定最佳的延迟时间和嵌入维数,对样本空间进行重构,使新的样本能够表征原始时间序列动态特性,更能反映风速变化特性。在此基础上运用BP神经网络进行短期风速预测。实验结果表明短期风速预测精度得到提高。  相似文献   

4.
利用三阶累积量反映多变量序列的高阶非线性相关性,建立了一种具有良好抗噪性的多变量相空间重构方法.将三阶累积量引入到序列局部本征维数(LID)的计算中,对不同相空间点构造新的三阶累积量相关矩阵;同时建立累积量切片评价函数,通过比较得到了对噪声及嵌入维数等重构参数变化鲁棒性强的累积量切片,然后确定序列的嵌入维数、嵌入延迟,重构多元变量相空间.仿真结果表明,建立的新方法对带噪声混沌序列具有较好的鲁棒性,多元变量奇异吸引子轨迹在重构相空间中得到了良好扩展.
  相似文献   

5.
多变量时间序列复杂系统的相空间重构   总被引:14,自引:0,他引:14  
根据单变量时间序列相空间重构思想 ,提出了多变量时间序列描述的复杂系统的相空间延迟重构方法 .对每一分量的时间序列 ,分别利用互信息最小法确定最佳延迟时间间隔 ,最小嵌入维数的选取方法是单变量时间序列情况下虚假邻点法的推广 .给出了q阶广义关联积分和q阶广义关联维数的计算公式 ,并证明了广义关联维数与所用范数无关 .计算了Lorenz系统按前 2个变量进行重构时的最佳延迟时间间隔和最小嵌入维数 .计算结果表明 ,用多变量时间序列重构比用单变量时间序列重构所需的数据长度要短得多且在方法上更有效  相似文献   

6.
选取2004-2014年间发病期的气象因素为自变量,小麦赤霉病病穗率为因变量,借助神经网络的函数映射能力,采用Fletcher-Reeves算法的变梯度反向传播算法,建立了小麦赤霉病的气象预报模型.由于神经网络无法提供直观的函数来反映病穗率与气象因子之间的关系,为了进一步分析气象因子间的相关性,采用主成分分析法提取主成分,并利用回归分析得到线性函数关系,建立了偏最小二乘模型.神经网络预测模型平均预报精度达到99%,但只提供病穗率和气象因子之间的拓扑关系;偏最小二乘预测模型可以得到病穗率和气象因子之间直观的函数关系,模型平均预报精度达到97%.2种模型均具有较高的预报精度,对小麦赤霉病的预防工作具有一定的参考价值.  相似文献   

7.
针对“因变量和自变量都是成分数据的前提下,如何建立它们之间的线性回归”的基本问题,以经典线性回归分析法为基础,结合对称Logratio变换,建立了一种基于偏最小二乘回归分析的成分数据预测模型,并对该模型进行了理论实证分析,论证了该模型的可行性与优良性,从而为解决具有成分数据信息的多重相关变量回归问题提供新的途径.  相似文献   

8.
提出了一种基于相空间重构与支持向量机预测公交客流量的新方法.应用互信息法计算公交客流量时间序列的最优时间延迟;应用Ca0氏方法计算其最佳嵌入维数;然后计算出最大Lyapunov指数,证实客流节存在混沌现象.建立相空间重构-支持向量机预测模型并确定训练样本对,对公交客流量数据进行预测.实例证明,该方法能有效地进行客流量预测.  相似文献   

9.
根据单变量时间序列相空间重构思想,提出了多变量时间序列描述的复杂系统的相空间延迟重构方法,对每一分量的时间序列,分别利用互信息最小法确定最佳延迟时间间隔,最小嵌入维数的选取方法是单变量时间序列情况下虚假邻点法的推广,给出了q阶广义关联积分和q阶广义关联维数的计算公式,并证明了广义并联维数与所用范数无关,计算了Lorenz系统按前2个变量进行重构时的最佳延迟时间间隔和最小嵌入维数,计算结果表明,用多变量时间序列重构比用单变量时间序列重构所需的数据长度要短得多且在方法上更有效。  相似文献   

10.
重油加氢裂化反应系统动态模型的建立   总被引:1,自引:0,他引:1  
将多元统计方法中的偏最小二乘(PLS)法与具有强非线性映射能力的人工神经网络(ANN)技术结合,建立了重油加氢裂化过程的动态模型。工况变化时,动态模型必须描述整个过渡过程,从而使动态样本集构成庞大的数据矩阵,为解决这一困难,提出了输入参数全部变化与单独变化相结合和动态样本选取方法。分析讨论了算法的降维、除噪能力以及动态过程时域的确定,建立了全工况模型。实例表明该方法可以涵盖样本空间的主要信息,基本满足仿真的实时与精度要求。  相似文献   

11.
将偏最小二乘回归(PLS)与神经网络(NN)耦合,建立了储层参数预报模型.利用偏最小二乘对影响储层参数的诸多因素进行分析,提取对因变量影响强的成分,从而克服了变量间的多重相关性问题,降低了神经网络的输入维数;同时,利用神经网络建模可以较好地解决非线性的储层参数预测问题.计算实例表明,本耦合模型的拟合和预报精度优于独立使用神经网络模型的精度.  相似文献   

12.
偏最小二乘法与人工神经网络耦合的小流域产沙模型   总被引:1,自引:0,他引:1  
针对小流域侵蚀产沙的复杂性,将偏最小二乘回归与人工神经网络耦合,建立了小流域降雨侵蚀产沙检验模型,并应用于小流域降雨侵蚀产沙预报.采用偏最小二乘法对多维自变量中的信息进行组合和提取,从而得到对因变量解释能力最强并可很好概括自变量信息的主成分,有效克服了变量之间的多重相关问题,实现了对高维数据的降维处理.把提取的主成分作为神经网络的输入,提高了网络的学习效率和稳健性.应用结果表明,偏最小二乘神经网络耦合模型的拟合和检验精度均优于偏最小二乘回归模型和人工神经网络模型精度.  相似文献   

13.
In order to manage and control semiconductor wafer fabrication system (SWFS) more effectively,the daily throughput prediction data of wafer fab are often used in the planning and scheduling of SWFS.In this paper,an artificial neural network (ANN) prediction method based on phase space reconstruction (PSR) and ant colony optimization (ACO) is presented,in which the phase space reconstruction theory is used to reconstruct the daily throughput time series,the ANN is used to construct the daily throughput prediction model,and the ACO is used to train the connection weight and bias values of the neural network prediction model.Testing with factory operation data and comparing with the traditional method show that the proposed methodology is effective.  相似文献   

14.
基于偏最小二乘法回归的工序质量建模   总被引:7,自引:0,他引:7  
针对制造工序质量控制问题,应用多元统计分析中的偏最小二乘回归法建立了质量模型.利用该模型可以定量分析加工工序与最终成品率之间的关系,进而通过将大量的工序影响因子约简得到主要影响因子子集.根据在线生产的相关质量数据,采用非线性迭代偏最小二乘法获得影响因子的权重.得到偏最小二乘因子权重可以在线预测成品质量变化,避免离线测试.在半导体制造实例研究中,以工序质量水平为自变量,成品质量水平为因变量,建立了质量水平传递模型,应用该方法可实现多工序质量异常的在线诊断和预测,为质量控制提供了定量依据.  相似文献   

15.
广义最大熵回归效果分析   总被引:1,自引:0,他引:1  
针对广义最大熵回归方法的建模效果问题,尤其是模型中未知参数和误差项支持空间选择的不确定性问题,该文剖析了该方法的建模过程,并通过两个实例将该方法与其它建模方法的回归效果进行了对比分析。结果表明:广义最大熵回归方法的预测精度与解释能力优于最小二乘法和偏最小二乘法以及主成分方法;在先验信息缺乏的情况下,参数支持空间越大越好;误差项支持空间应在3σ与4σ之间。  相似文献   

16.
采用新型的多元统计分析方法—偏最小二乘回归(PLS)分析方法,利用1988~2004年的统计数据对湖北省经济增长情况进行了科学的分析.分析结果表明:人口增长因素对湖北省的经济增长有阻碍作用;湖北省的进出口水平不平衡,对经济增长有很大的影响.还有一些其他因素分别对经济增长有不同程度的积极作用.  相似文献   

17.
组合灰色神经网络法在地下水动态预测中应用   总被引:3,自引:0,他引:3  
为了更好的预测地下水水位,在对现有的地下水动态预测的方法深入分析的基础上,利用某地区地下水位监测数据,采用灰色动态模型与人工神经网络相结合的方法,对该地区地下水水位进行了建模预测分析,并对未来可能的变化进行预测.预测结果与实测结果吻合较好,达到了较高精度,该方法对于地下水的动态预报具有一定的实用价值.  相似文献   

18.
地下水水质预测的多元线性回归分析模型研究   总被引:1,自引:0,他引:1  
运用回归分析理论和方法,建立了一个基于多元线性回归分析法的地下水水质动态预测模型,并将该模型用于遵义市海龙坝地下水水质的动态预测.结果表明预测精度较高,建立的模型较符合本研究区的实际情况.  相似文献   

19.
在高速网络资源分配与拥塞控制研究中,网络业务流量的预报是一个具有重要意义的课题.基于准确的业务预报,网络管理和控制方案更易于适应业务流量的动态变化,从而达到优化网络性能的目的.而高速网络中大量存在着以自相似性为特征的多种业务流量.已有研究表明,这种自相似特性与混沌现象的吸引子有着紧密的联系.笔者利用混沌时间序列的重构相空间方法,对高速网络中自相似信源的速率做出了预测,并给出了最大可预报时间.该方法的预测模式简单,仿真结果表明,预测的精度也比较高.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号