首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 92 毫秒
1.
合成孔径雷达(synthetic aperture radar,SAR)图像是一种能够全天时、全天候产生高分辨率图像的主动式对地观测系统,在农业和军事等方面得到了广泛应用.然而,由于相干成像机制受到相干斑噪声的影响,因此提出了一种基于生成式对抗网络的SAR图像盲去噪算法,构造了基于残差结构的深度卷积神经网络(deep convolutional neural network,DCNN)作为生成网络,可以加速训练过程,提高去噪性能.本文还利用峰值信噪比(peak signal to noise ratio,PSNR)和结构相似指数(structural similarity index measure,SSIM)定义一种新的损失函数,使得去噪后的图像更符合人眼的视觉感知要求.实验结果表明,本文算法可以有效地抑制SAR图像中的相干噪声,获得良好的去噪效果.  相似文献   

2.
为解决现有字体模型不完善的笔画连接、不正确的拓扑结构、字形模糊等伪影问题,提出了一种基于改进条件生成对抗网络的汉字字体生成算法.本算法将字体生成任务视为图像转换问题,提出FontToFont和MSAFont两种自动字体生成方法.针对现有汉字字体生成模型存在的问题,提出了基于改进条件生成对抗网络的汉字字体生成算法FontToFont,通过引入U-Net网络结构,可以使生成器保存更详细的信息,并有利于模型性能.建立一种基于多种风格汉字字体的数据集,定性定量验证模型的性能.提出的这种基于改进条件生成对抗网络的汉字字体生成算法,能够从多风格汉字字体中的一部分字体生成高质量的一整套汉字字体.通过设计师的评价及模型消融实验,生成字体的视觉质量和完整度效果良好.  相似文献   

3.
针对多聚焦图像融合中权重分配和融合规则设计困难的问题,本文提出了一种基于改进生成对抗网络的多聚焦图像融合算法。首先,对生成器网络和判别器网络进行设计,为了避免图像在网络模型传递过程中造成的信息丢失,裁撤网络结构中的池化层,通过卷积层叠提取图像特征。其次,构建生成对抗网络的损失函数,优化网络参数,得到最佳的网络模型。最后,将实验结果与现有的几种融合算法相比较,通过5种客观评价指标来评价融合图像的效果。结果表明,本文提出的算法不仅在主观上有着良好的视觉效果,也在客观评价指标上有显著优势。  相似文献   

4.
基于生成对抗网络(generative adversarial networks, GAN)的数据生成特性,提出一种用于信道特征生成的GAN改进模型,即信道特征生成对抗网络(channel feature generative adversarial networks, CFGAN)。采用完全无监督学习信道特征方式,利用线性编码向量与生成信道之间的互信息关系和变分互信息最大化原理,实现编码向量与信道特征对应;采用实测室内电力线信道数据集训练CFGAN模型,训练完成的CFGAN能够学习到不同信道特征分布。仿真表明,在-80~-10 dB大动态衰减范围内,CFGAN可根据学习到的信道特征生成具有明显区别的4类信道模型,并且生成信道和实测信道的信道特征差异小于2%。  相似文献   

5.
6.
针对生成对抗网络(GAN)在人脸修复任务中存在的修复效果不佳、细节体现不足、修复边缘生硬等问题,提出一种跳跃连接式生成对抗网络.首先,在双判别器模型基础上,通过在生成器中引入跳跃连接来获取更多层间特征来提升图像修复效果;其次,采用步长卷积进行采样来减少采样造成的信息损失;最后,在CelebA数据集上进行实验,并用峰值信...  相似文献   

7.
在计算机机械学习领域,相对于数字和英文字母,手写汉字的自动生成研究是个重点难点问题,且具有重要研究意义。随着深度学习的不断发展,生成对抗网络在图像生成领域取得了很大进展。本文提出了一种基于循环生成对抗网络(Cycle Generative Adversarial Networks, CycleGAN)的无监督手写汉字生成方法。利用标准仿宋字体图像和手写字体图像进行训练,生成的手写汉字图像具有比较高的识别度。  相似文献   

8.
针对基于深度学习的分类器面对对抗样本时缺乏稳定性的问题,基于生成对抗网络(GAN)提出了一种新的模型,用于生成对抗样本。该模型首次实现了直接以恶意网络流为原始样本的对抗样本生成,并首次提出了弱相关位的概念,用于保证恶意网络流对抗样本的可执行性和攻击性。利用该模型生成的对抗样本能够有效地欺骗基于深度学习的网络安全检测器,且通过实验验证了该对抗样本具有实际攻击效果。  相似文献   

9.
风机齿轮箱是风力涡轮传动系统中的关键部分,其故障发生随机、故障样本数量不足,严重影响故障诊断的准确性。针对此问题,提出一种基于循环卷积生成对抗网络的风机齿轮箱故障诊断方法。首先,构建基于循环卷积生成对抗网络的样本生成模型,利用卷积网络和循环网络作为生成器增强样本间的时间相关性;借助Wasserstein距离与梯度惩罚项改进目标函数,并通过博弈对抗机制优化生成器和判别器,提高模型的泛化能力。然后,结合真实样本和生成样本,设计基于堆叠去噪自编码器的故障诊断方法,实现齿轮箱的故障诊断。最后,利用风力涡轮传动系统数据集验证所提出的风机齿轮箱故障诊断方法的性能。结果显示,所提方法能够有效平衡故障样本数据集,进一步提高风机齿轮箱故障诊断的准确率。  相似文献   

10.
针对敦煌唐代壁画修复所面临的褪、变色以及修复后的壁画图像色彩存在假色和伪影的问题,提出基于循环生成对抗网络和多尺度融合协调注意力机制的壁画色彩修复算法。首先在循环一致性损失中添加同一映射损失,然后改进协调注意力机制,提出多尺度融合的协调注意力机制,最后在生成器中引入多尺度融合的协调注意力机制,对图像进行卷积核大小为1×1、3×3、5×5、7×7的多尺度卷积运算,提高生成图像的协调性。实验结果表明,与CycleGAN、WGAN等经典算法相比,本文算法在构造的壁画数据集上精度更高,可以在不依赖专家知识的情况下修复褪色壁画图像的颜色。  相似文献   

11.
海马子区体积很小且结构复杂,传统分割方法无法达到理想分割效果,为此引入生成对抗网络模型用于海马子区图像分割.该方法构建一个生成对抗网络模型,通过构建生成网络和对抗网络并对其进行交替对抗训练实现对脑部海马子区图像的像素级精确分割.实验选取美国旧金山CIND中心的32位实验者的脑部MRI图像进行海马子区分割测试,在定性和定量方面分别对比了所提方法基于稀疏表示与字典学习方法和传统CNN的分割结果.实验结果表明,该方法优于基于稀疏表示与字典学习和CNN方法,海马子区分割准确率有较大提升.该方法提升了海马子区的分割准确率,可用于大脑核磁图像中海马子区的分割,为诸多神经退行性疾病的临床诊断与治疗提供依据.  相似文献   

12.
提出了一种新的基于生成对抗网络的人脸图像彩色化方法.所提出的网络结构包含两组生成对抗子网络,每个子网络由一个生成器和判别器组成.其中,一个对抗子网络A(包含生成器A和判别器A)实现从灰度图像到彩色图像的翻译过程,另一个子网络B(包含生成器B和判别器B)反转该过程,即生成器B对称地使用生成器A的最终输出图像作为输入,用来重建原始的人脸灰度图像.其中,网络中的循环损失进行图像重建,而生成损失和对抗损失用来保证生成的图像更加接近真实图像.实验结果表明,这种结构设计不仅能实现自然逼真的人脸图像彩色化,还能同时保证人脸的身份属性不变.   相似文献   

13.
随着可再生能源机组以多微网的形式接入配电网,其出力的不确定性会给配电网与多微网调度带来挑战。因此,如何对配电网与多微网中可再生能源的特性进行分析,准确把握可再生能源的出力特性,建立考虑可再生能源出力特性的配电网与多微网调度模型,成为目前亟待研究和解决的问题。本文提出了一种基于Wasserstein生成对抗网络的配电网与多微网日前随机调度方法。首先针对风电以及光伏日前预测的不确定性,采用基于Wasserstein生成对抗网络的数据驱动算法,对风电和光伏出力预测误差进行场景生成;对于生成的风光出力场景,基于K-mediods场景削减法得到风光典型场景;在配电网与多微网调度目标函数中综合考虑调度的经济性指标以及韧性指标,基于场景法模拟可再生能源出力的不确定性,建立配电网与多微网日前随机调度模型并求解。仿真结果表明,所提的配电网与多微网随机调度模型在可再生能源出力场景生成方面,相比于传统假定概率分布的生成方法,其生成的场景更接近实际场景。  相似文献   

14.
生成式对抗网络(GAN)是一种优秀的生成式模型,能够不依赖任何先验假设,学习到高维复杂的数据分布。这一强大的性能使得它成为近年来研究的热点,并在诸多应用领域取得了显著的研究成果。首先介绍了生成式对抗网络的基本原理,各种目标函数以及常用的模型结构。然后,详细分析了生成式对抗网络在条件限制下生成图片的各种演进方法。此外,介绍了生成式对抗网络在不同领域的应用,包括高分辨率图像生成、小目标检测、非图像数据生成、医学图像分割等方面的最新研究进展。最后,总结了生成式对抗网络训练过程中的优化技巧。旨在通俗地阐明GAN的基础理论以及发展历程,并从应用角度对未来工作进行了展望。  相似文献   

15.
针对风格多样的中文字体设计和复杂操作的问题,提出一种生成式对抗网络的汉字风格迁移和字库设计方法。将宋体与黑体作为测试数据集,将瑞虎宋体作为目标数据集,通过生成式对抗网络对抗训练方法,使宋体与黑体字风格转换为瑞虎宋体风格。通过实验生成的字体图像轮廓更加平滑和美观,表明本文提出的方法能够显著提高对字形设计的工作效率。  相似文献   

16.
提出了一种基于生成对抗网络的细胞形变动态分类方法,以活细胞视频中的细胞形变动态为对象,引入分类器辅助的生成对抗网络结构同步训练生成对抗网络和分类网络,通过生成对抗网络产生的数据提高了原本分类网络分辨细胞形变动态的性能.首先,细胞动态图像被用于将活细胞视频中的时间维度进行压缩,使其从视频域映射到图像域以方便生成对抗网络的构建.其次,基于分类器辅助的生成对抗网络结构,将分类网络的分类信息作为辅助信息来改善生成对抗网络对多类样本的生成,同时生成网络生成的多类样本可以反过来优化分类网络对于细胞动态形变的分类性能.在构建的活细胞视频数据库上,可以验证提出方法能有效地捕获细胞视频中的空时细胞形变动态,并且其分类的性能优于其它主流方法.  相似文献   

17.
针对当前卷积神经网络未能充分利用浅层特征信息, 并难以捕获各特征通道间的依赖关系、 丢失高频信息的问题, 提出一种新的生成对抗网络用于图像超分辨率重建. 首先, 在生成器中引入WDSR-B残差块充分提取浅层特征信息; 其次, 将GCNet模块和像素注意力机制相结合加入到生成器和鉴别器中, 学习各特征通道的重要程度和高频信息; 最后, 采用谱归一化代替不利于图像超分辨率的批规范化, 减少计算开销, 稳定训练. 实验结果表明, 该算法与其他经典算法相比能有效提高浅层特征信息的利用率, 较好地重建出图像的细节信息和几何特征, 提高超分辨率图像的质量.  相似文献   

18.
针对正常和异常声音可能具有较大的相似性, 有时无法利用自编码器重构误差大小区分的问题, 提出一种生成对抗单分类网络方法进行异常声音检测, 通过多次训练, 该方法学习正常样本的分布特征. 在测试过程中, 测试正常样本能以极小的误差进行重构, 而异常样本重构效果较差, 在某些频率段会发生畸变, 从而给出判别分类结果. 实验采用UrbanSound8K公开数据集和实测电机声音数据集进行了测试, 获得该方法的准确率分别为86.3%和98.1%, 比卷积自动编码器等主要深度学习方法分别提高了5.0%和3.0%.  相似文献   

19.
在真实雾天场景下,针对除雾网络无法去除远处雾气、天空区域容易出现噪声的问题,提出了一种基于多尺度密集特征融合的生成式对抗除雾网络,并采用制作的合成雾天数据集进行对抗训练.首先,对除雾网络进行设计,构建了网络模型;其次,从合成晴朗天气图像中利用深度标签生成逼真的雾天数据集,以适用于真实雾天除雾领域;最后,在真实雾天数据集上测试,选取近几年具有代表性的6种基于深度学习的除雾网络进行主观视觉效果,并借助除雾领域常用的无参考图像质量评价指标进行客观分析.研究结果表明:提出的除雾网络在真实场景下的除雾效果较其他网络有显著提升,主观视觉效果明显优于对比的除雾网络,在无参评价指标上综合表现优于其他除雾网络.  相似文献   

20.
使用生成对抗网络(GAN)扩充宫颈癌病理图像的数据集以提高计算机辅助诊断的准确率.首先,使用GAN进行细胞质部分图像生成;其次,使用两次k-means聚类对生成图像进行筛选;最后,使用Inception-V3模型对数据集进行分类训练.结果表明,在测试集相同的情况下,该方法可以将总体分类准确率提升约2.5%,尤其对低分化宫颈癌病理图像有显著效果.通过GAN解决了组织病理学图像无方向性、内容复杂、前景目标规则性差等问题,证明了该方法的有效性及发展潜力.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号