首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Mechanisms of p53-mediated apoptosis   总被引:25,自引:0,他引:25  
  相似文献   

3.
Syntrophins are a family of cytoplasmic membrane-associated adaptor proteins, characterized by the presence of a unique domain organization comprised of a C-terminal syntrophin unique (SU) domain and an N-terminal pleckstrin homology (PH) domain that is split by insertion of a PDZ domain. Syntrophins have been recognized as an important component of many signaling events, and they seem to function more like the cell’s own personal ‘Santa Claus’ that serves to ‘gift’ various signaling complexes with precise proteins that they ‘wish for’, and at the same time care enough for the spatial, temporal control of these signaling events, maintaining overall smooth functioning and general happiness of the cell. Syntrophins not only associate various ion channels and signaling proteins to the dystrophin-associated protein complex (DAPC), via a direct interaction with dystrophin protein but also serve as a link between the extracellular matrix and the intracellular downstream targets and cell cytoskeleton by interacting with F-actin. They play an important role in regulating the postsynaptic signal transduction, sarcolemmal localization of nNOS, EphA4 signaling at the neuromuscular junction, and G-protein mediated signaling. In our previous work, we reported a differential expression pattern of alpha-1-syntrophin (SNTA1) protein in esophageal and breast carcinomas. Implicated in several other pathologies, like cardiac dys-functioning, muscular dystrophies, diabetes, etc., these proteins provide a lot of scope for further studies. The present review focuses on the role of syntrophins in membrane targeting and regulation of cellular proteins, while highlighting their relevance in possible development and/or progression of pathologies including cancer which we have recently demonstrated.  相似文献   

4.
The subfamily of WNK protein kinases is composed of four human genes and is characterised by a typical sequence variation within the conserved catalytic domain. Although most research has focussed on the role of WNK1, WNK3 and WNK4 in regulating different ion transporters in both the kidney and extrarenal tissues, there is growing evidence for additional roles of WNK kinases in various signalling cascades related to cancer. Here, we review the connection between WNK kinases and tumorigenesis and describe existing experimental evidence as well as potential new links to major aspects of tumour biology. In particular, we discuss their role in G1/S cell cycle progression, metabolic tumour cell adaptation, evasion of apoptosis and metastasis.  相似文献   

5.
The cathelin-like domain (CLD) of cathelicidins is grouped in the same superfamily with cystatins, natural cysteine protease inhibitors, due to their structural similarity. Intriguingly, human hCAP-18/LL37 and pig protegrin-3 (PG3) CLDs exhibit opposite effects against cathepsin L. Here, I evaluated the functional importance of the CLD through identifying whether positive selection has driven adaptive evolution of this domain. As a result, four positively selected sites were detected and three of them are located on a loop region previously recognized as a key determinant of the activating effect of the PG3 CLD. Analysis of amino acid variability of the CLD led to the discovery of a conserved region and three highly variable regions, in which two are subjected to positive selection. Positive selection targeting the variable regions provides a starting point for experimentally establishing a direct link between the observed amino acid changes and functional divergence of the CLD family. Received 8 February 2008; accepted 13 February 2008  相似文献   

6.
Hypoxia affects many important processes in tumour progression and is a key feature in the tumour microenvironment that needs to be taken into account when evaluating prognostics and therapeutic options for cancer patients. Hypoxia-regulating proteins, i.e. hypoxia inducible factors (HIFs), and associated gene products have been linked to certain tumour behaviours and might be useful as prognostic and predictive markers. Recently, hypoxia-driven gene products have been launched as novel cancer treatment targets with the potential to increase tumour-specific effects. Breast cancer consists of a multitude of different diseases with certain common characteristics, but also clearly disparate behaviours and genetic alterations. In this review we will summarise the role of hypoxia in breast cancer and specifically outline the importance of hypoxia and HIF-1alpha regarding prognostic and treatment-specific implications. (Part of a Multi-author Review).  相似文献   

7.
During its lifetime, the mammary gland undergoes many phases of development and differentiation. Much of this occurs during puberty, when the ductal epithelium expands by branching morphogenesis, invading the surrounding fat pad to form an organised mammary tree. Throughout its existence, the epithelium will go through several cycles of proliferation and cell death during pregnancy, lactation and involution. Many of the signalling mechanisms which control the initial invasion of the fat pad by the epithelium, and regulate its continuing plasticity, can be harnessed or corrupted by tumour cells in order to support their aberrant growth and progression towards invasion. This is true not just for the epithelial cells themselves but also for cells in the surrounding microenvironment, including fibroblasts, macrophages and adipocytes. This review examines the complex web of signalling and adhesion interactions controlling branching morphogenesis, and how their alteration can promote malignancy. Current in vivo and in vitro mammary gland models are also discussed. (Part of a Multi-author Review)  相似文献   

8.
Prolactin inducible protein (PIP) is a 17- kDa single polypeptide chain, known by various names due to its versatile nature and function in human reproductive and immunological systems. It is expressed in several exocrine tissues such as the lacrimal, salivary, and sweat glands. Its expression is up regulated by prolactin and androgens, and estrogens down regulate it. Due to its over-expression in metastatic breast and prostate cancer, presently PIP is considered as a prognostic biomarker. Moreover, its aspartyl-proteinase nature suggests its role in tumor progression. PIP has unique features because it is small in size and plays multiple important functions. Its ability to bind potentially with CD4-T cell receptor, immunoglobulin G (IgG), actin, zinc α2-glycoprotein (ZAG), fibronectin and enamel pellicle, reveals its important biological functions. This is the first comprehensive review on the structure and functional analysis of PIP and its clinical applications. Received 04 August 2008; received after revision 09 September 2008; accepted 15 September 2008  相似文献   

9.
10.
Intraflagellar transport (IFT) is required for ciliogenesis by ferrying ciliary components using IFT complexes as cargo adaptors. IFT54 is a component of the IFT-B complex and is also associated with cytoplasmic microtubules (MTs). Loss of IFT54 impairs cilia assembly as well as cytoplasmic MT dynamics. The N-terminal calponin homology (CH) domain of IFT54 interacts with tubulins/MTs and has been proposed to transport tubulin during ciliogenesis, whereas the C-terminal coiled-coil (CC) domain binds IFT20. However, the precise function of these domains in vivo is not well understood. We showed that in Chlamydomonas, loss of IFT54 completely blocks ciliogenesis but does not affect spindle formation and proper cell cycle progression, even though IFT54 interacts with mitotic MTs. Interestingly, IFT54 lacking the CH domain allows proper flagellar assembly. The CH domain is required for the association of IFT54 with the axoneme but not with mitotic MTs, and also regulates the flagellar import of IFT54 but not IFT81 and IFT46. The C-terminal CC domain is essential for IFT54 to bind IFT20, and for its recruitment to the basal body and incorporation into IFT complexes. Complete loss of IFT54 or the CC domain destabilizes IFT20. ift54 mutant cells expressing the CC domain alone rescue the stability of IFT20 and form stunted flagella with accumulation of both IFT-A component IFT43 and IFT-B component IFT46, indicating that IFT54 also functions in IFT turn-around at the flagellar tip.  相似文献   

11.
12.
Cell adhesion molecules (CAMs) of the immunoglobulin superfamily (IgSF) regulate important processes such as cell proliferation, differentiation and morphogenesis. This activity is primarily due to their ability to initiate intracellular signaling cascades at cell–cell contact sites. Junctional adhesion molecule-A (JAM-A) is an IgSF-CAM with a short cytoplasmic tail that has no catalytic activity. Nevertheless, JAM-A is involved in a variety of biological processes. The functional diversity of JAM-A resides to a large part in a C-terminal PDZ domain binding motif which directly interacts with nine different PDZ domain-containing proteins. The molecular promiscuity of its PDZ domain motif allows JAM-A to recruit protein scaffolds to specific sites of cell–cell adhesion and to assemble signaling complexes at those sites. Here, we review the molecular characteristics of JAM-A, including its dimerization, its interaction with scaffolding proteins, and the phosphorylation of its cytoplasmic domain, and we describe how these characteristics translate into diverse biological activities.  相似文献   

13.
14.
Morphological control of Moncada's bioassay for prostacyclin (PG I2) activity measurement shows that the activity depends not only on endothelium, but in important amounts on subendothelial tissue too. Therefore, it can be concluded that platelet thrombus formation after endothelial cell injury does not depend only on the PG I2-producing ability of the tissue.  相似文献   

15.
Neutrophils are being increasingly recognized as an important element in tumor progression. They have been shown to exert important effects at nearly every stage of tumor progression with a number of studies demonstrating that their presence is critical to tumor development. Novel aspects of neutrophil biology have recently been elucidated and its contribution to tumorigenesis is only beginning to be appreciated. Neutrophil extracellular traps (NETs) are neutrophil-derived structures composed of DNA decorated with antimicrobial peptides. They have been shown to trap and kill microorganisms, playing a critical role in host defense. However, their contribution to tumor development and metastasis has recently been demonstrated in a number of studies highlighting NETs as a potentially important therapeutic target. Here, studies implicating NETs as facilitators of tumor progression and metastasis are reviewed. In addition, potential mechanisms by which NETs may exert these effects are explored. Finally, the ability to target NETs therapeutically in human neoplastic disease is highlighted.  相似文献   

16.
Interkinetic nuclear migration (INM) is an oscillatory nuclear movement that is synchronized with the progression of the cell cycle. The efforts of several researchers, following the first report of INM in 1935, have revealed many of the molecular mechanisms of this fascinating phenomenon linking the timing of the cell cycle and nuclear positioning in tissue. Researchers are now faced with a more fundamental question: is INM important for tissue, particularly brain, development? In this review, I summarize the current understanding of the regulatory mechanisms governing INM, investigations involving several different tissues and species, and possible explanations for how nuclear movement affects cell-fate determination and tissue formation.  相似文献   

17.
Structural properties of matrix metalloproteinases   总被引:16,自引:0,他引:16  
Matrix metalloproteinases (MMPs) are involved in extracellular matrix degradation. Their proteolytic activity must be precisely regulated by their endogenous protein inhibitors, the tissue inhibitors of metalloproteinases (TIMPs). Disruption of this balance results in serious diseases such as arthritis, tumour growth and metastasis. Knowledge of the tertiary structures of the proteins involved is crucial for understanding their functional properties and interference with associated dysfunctions. Within the last few years, several three-dimensional MMP and MMP-TIMP structures became available, showing the domain organization, polypeptide fold and main specificity determinants. Complexes of the catalytic MMP domains with various synthetic inhibitors enabled the structure-based design and improvement of high-affinity ligands, which might be elaborated into drugs. A multitude of reviews surveying work done on all aspects of MMPs have appeared in recent years, but none of them has focused on the three-dimensional structures. This review was written to close the gap. Received 18 November 1998; accepted 11 December 1998  相似文献   

18.
Crohn’s disease (CD) is one of main disease entities under the umbrella term chronic inflammatory bowel disease. The etiology of CD involves alterations in genetic, microbiological, and immunological factors. This review is devoted to the role of the bacterial wall compound muramyl dipeptide (MDP) for the activation of inflammatory pathways involved in the pathogenesis of CD. The importance of this molecule is underscored by the fact that (1) MDP, which is found in most Gram-negative and -positive bacteria, is able to trigger several immunological responses in the intestinal system, and (2) that alterations in several mediators of the MDP response including—but not restricted to—nucleotide oligomerization domain 2 (NOD2) are associated with CD. The normalization of MDP signaling is one of several important factors that influence the intestinal inflammatory response, a fact which emphasizes the pathogenic importance of MDP signaling for the pathogenesis of CD. The important aspects of NOD2 and non-NOD2 mediated effects of MDP for the development of CD are highlighted, as well as how alterations in these pathways might translate into the development of new therapeutic strategies.  相似文献   

19.
The cellular prion protein PrP(C)/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrP(C) displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrP(C) displays important similarities with the HIV-1 nucleocapsid protein and found that PrP(C) expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrP(C) mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrP(C) binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrP(C) colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrP(C) in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.  相似文献   

20.
The dual role model for p53 in maintaining genomic integrity   总被引:11,自引:0,他引:11  
The tumour suppressor p53 is a potent mediator of cellular responses against genotoxic insults. In this review we describe the multiple functions of p53 in response to DNA damage, with an emphasis on p53's role in DNA repair. We summarize data demonstrating that p53 actively participates in various processes of DNA repair and DNA recombination via its ability to interact with components of the repair and recombination machinery, and by its various biochemical activities. An important aspect in evaluating p53 functions is provided by the finding that the core domain of p53 harbours two mutually exclusive biochemical activities, sequence-specific DNA binding required for its transactivation function, and 3'-5' exonuclease activity, possibly involved in aspects of DNA repair. Based on the finding that modifications of p53 which lead to activation of its sequence-specific DNA-binding activity result in inactivation of its 3'-5' exonuclease activity, we propose that p53 exerts its functions as a 'guardian of the genome' at various levels: in its noninduced state, p53 should not be regarded as a 'dead' protein but, for example, via its exonuclease activity might be actively involved in prevention and repair of endogenous DNA damage. Upon induction through exogenous DNA damage, p53 will exert its well-documented functions as a superior response element in various types of cellular stress. This dual role model for p53 in maintaining genomic integrity significantly enhances p53's possibilities as a guardian of the genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号