首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Selective serotonin reuptake inhibitors (SSRIs) are a heterogeneous group of new antidepressants that cause a well documented acquired but reversible serotonin deficiency in blood platelets. Platelets are small, anucleate cells and are the only blood cells specialized in storing peripheral serotonin. Platelets are also an integral part of the hemostatic process that is initiated during pathologic thrombus formation in cardiovascular diseases. Serotonin release from platelets is important for functional hemostasis as indicated by congenital diseases with serotonin-deficient platelets that can lead to life-threatening bleeding problems. The postulate that SSRIs should have an impact on cardiovascular diseases is therefore well founded. Cardiovascular effects of SSRIs have indeed been shown in a number of studies investigating the effect of SSRIs in patients with psychosomatic comorbidity. SSRIs reduce the incidence of recurrent myocardial infarction (MI) in patients suffering from post-MI depression. In addition, SSRIs inhibit tight clot formation of platelets in vitro, which points to a direct anti-thrombotic or pro-fibrinolytic effect of SSRIs.Received 16 June 2004; received after revision 9 September 2004; accepted 23 September 2004  相似文献   

2.
Platelets interact with bacterial pathogens through a wide array of cellular and molecular mechanisms. The consequences of this interaction may significantly influence the balance between infection and immunity. On the one hand, recent data indicate that certain bacteria may be capable of exploiting these interactions to gain a virulence advantage. Indeed, certain bacterial pathogens appear to have evolved specific ways in which to subvert activated platelets. Hence, it is conceivable that some bacterial pathogens exploit platelet responses. On the other hand, platelets are now known to possess unambiguous structures and functions of host defense effector cells. Recent discoveries emphasize critical features enabling such functions, including expression of toll-like receptors that detect hallmark signals of bacterial infection, an array of microbicidal peptides, as well as other host defense molecules and functions. These concepts are consistent with increased risk and severity of bacterial infection as correlates of clinical abnormalities in platelet quantity and quality. In these respects, the molecular and cellular roles of platelets in host defense against bacterial pathogens are explored with attention on advances in platelet immunobiology.  相似文献   

3.
Aspirin exerts anti-thrombotic action by acetylating and inactivating cyclooxygenase-1, preventing the production of thromboxane A 2 in platelets. Through this inhibition of platelet function, aspirin is considered as a preventative of ischemic diseases such as coronary and cerebral infarction. However, many studies have revealed that aspirin has other beneficial actions in addition to its anti-platelet activity. For example, aspirin may confer some benefit against colorectal cancer. Here, we discuss the involvement of inflammation in atherosclerosis and how aspirin exerts its beneficial actions in atherosclerotic diseases and cancer. Received 30 September 2007; received after revision 31 October 2007; accepted 6 November 2007  相似文献   

4.
In 1986, Brown and Clemmons (Proc. natl Acad. Sci. USA 83 (1986) 3321) showed that platelets contain a substance, platelet-derived growth inhibitor (PDGI), that inhibits in vitro endothelial cell replication. Although platelets are rich in transforming growth factor beta (TGF-beta), PDGI was considered not to be related to TGF-beta, on the basis of its reported properties (extraction from platelets at neutral pH, binding to heparin-Sepharose). However, we purified PDGI to near homogeneity and showed that on the basis of HPLC retention behavior, in vitro growth inhibitory activities with several cell types, receptor binding, and immunoneutralization of growth inhibitory activity with specific anti-TGF-beta type 1 antibodies, PDGI is most probably identical with TGF-beta type 1.  相似文献   

5.
Platelets, endothelium and blood vessel wall   总被引:2,自引:0,他引:2  
P M Vanhoutte 《Experientia》1988,44(2):105-109
Aggregating platelets cause contraction of vascular smooth muscle, because they release serotonin and thromboxane A2. If the platelets aggregate in a blood vessel with intact intima, the platelet-products cause endothelium-dependent relaxation of the underlying smooth muscle. Hence, the presence of an intact intima considerably reduces the vasospastic response to platelet-aggregation. The major platelet products which trigger endothelium-dependent relaxations are the adenine nucleotides and serotonin. The ability of the endothelium to prevent platelet-induced vasospasm is augmented after chronic intake of cod liver oil, but is reduced after previous intimal injury.  相似文献   

6.
Platelet-activating factor (P.A.F.) is a mediator of anaphylaxis released from human and Rabbit basophils which causes aggregation of platelets and release of their vasoactive amines. We have induced the release of P.A.F. from Rat peritoneal cells (P.C.) with ionophore A 23187. After fractionation of P.C. on 5-15% Ficoll gradients, P.A.F. was obtained from macrophage-rich but not from mastocyte-rich fractions and from adherent cells but not from non adherent cells. These data suggest an important new function for the macrophage: aggregation of platelets and release of their vasoactive amines and others mediators of inflammation.  相似文献   

7.
Recent studies have demonstrated a critical role for nerves in enabling tumor progression. The association of nerves with cancer cells is well established for a variety of malignant tumors, including pancreatic, prostate and the head and neck cancers. This association is often correlated with poor prognosis. A strong partnership between cancer cells and nerve cells leads to both cancer progression and expansion of the nerve network. This relationship is supported by molecular pathways related to nerve growth and repair. Peripheral nerves form complex tumor microenvironments, which are made of several cell types including Schwann cells. Recent studies have revealed that Schwann cells enable cancer progression by adopting a de-differentiated phenotype, similar to the Schwann cell response to nerve trauma. A detailed understanding of the molecular and cellular mechanisms involved in the regulation of cancer progression by the nerves is essential to design strategies to inhibit tumor progression.  相似文献   

8.
Peptides in the mammalian cardiovascular system   总被引:2,自引:0,他引:2  
Summary Ample immunocytochemical evidence is now available demonstrating that several peptides are present in the mammalian cardiovascular system where they are localised to nerve fibres and myocardial cells. The neuropeptides (neuropeptide Y, calcitonin gene-related peptide, tachykinins and vasoctive intestinal polypeptide) are localised to large secretory vesicles in subpopulations of afferent or efferent nerves supplying the heart and vasculature of several mammals, including man. Although they often exert potent pharmacological effects on the tissues in which they occur their physiological significance has still to be established. They may act directly via specific receptors and/or indirectly by influencing the release and action of other cardiovascular transmitters. In marked contrast, atrial natriuretic peptide is produced by cardiac myocytes and considered to act as a circulating hormone.  相似文献   

9.
Peptides in the mammalian cardiovascular system   总被引:4,自引:0,他引:4  
Ample immunocytochemical evidence is now available demonstrating that several peptides are present in the mammalian cardiovascular system where they are localised to nerve fibres and myocardial cells. The neuropeptides (neuropeptide Y, calcitonin gene-related peptide, tachykinins and vasoactive intestinal polypeptide) are localised to large secretory vesicles in subpopulations of afferent or efferent nerves supplying the heart and vasculature of several mammals, including man. Although they often exert potent pharmacological effects on the tissues in which they occur their physiological significance has still to be established. They may act directly via specific receptors and/or indirectly by influencing the release and action of other cardiovascular transmitters. In marked contrast, atrial natriuretic peptide is produced by cardiac myocytes and considered to act as a circulating hormone.  相似文献   

10.
Myelin basic protein (MBP) isolated from bovine spinal cord caused a marked shape change reaction of human blood platelets which was not accompanied by the release reaction and not inhibited by methysergide and spiroperidol. Only those basic proteins, including MBP, which had previously shown to exert neuronal depolarisation also induced the shape change reactions. Therefore, these findings may extend the use of platelets as neuronal models.  相似文献   

11.
Platelets impregnated with heavy metals appeared as 3 distinct morphological types: 'reticular' cells with a polygonal dense tubular network and stained granules, dark metallophilic cells, and pale metallophobic cells with microvesicles and non-staining granules. On stimulation, type 1 cells decreased while type 3 cells increased, suggesting that with activation dense tubules break up into microvesicles and granules become metallophobic. In the type 2 cells a different functional mechanism may exist.  相似文献   

12.
Summary Myelin basic protein (MBP) isolated from bovine spinal cord caused a marked shape change reaction of human blood platelets which was not accompanied by the release reaction and not inhibited by methysergide and spiroperidol. Only those basic proteins, including MBP, which had previously shown to exert neuronal depolarisation also induced the shape change reaction. Therefore, these findings may extend the use of platelets as neuronal models.Acknowledgment. We thank Miss B. Gieux and Miss M. Handschin for skilful technical assistance.  相似文献   

13.
Breast and ovarian cancer are among the most common malignancies diagnosed in women worldwide. Together, they account for the majority of cancer-related deaths in women. These cancer types share a number of features, including their association with hereditary cancer syndromes caused by heterozygous germline mutations in BRCA1 or BRCA2. BRCA-associated breast and ovarian cancers are hallmarked by genomic instability and high sensitivity to DNA double-strand break (DSB) inducing agents due to loss of error-free DSB repair via homologous recombination (HR). Recently, poly(ADP-ribose) polymerase inhibitors, a new class of drugs that selectively target HR-deficient tumor cells, have been shown to be highly active in BRCA-associated breast and ovarian cancers. This finding has renewed interest in hallmarks of HR deficiency and the use of other DSB-inducing agents, such as platinum salts or bifunctional alkylators, in breast and ovarian cancer patients. In this review we discuss the similarities between breast and ovarian cancer, the hallmarks of genomic instability in BRCA-mutated and BRCA-like breast and ovarian cancers, and the efforts to search for predictive markers of HR deficiency in order to individualize therapy in breast and ovarian cancer.  相似文献   

14.
Melanocytes and Schwann cells are derived from the multipotent population of neural crest cells. Although both cell types were thought to be generated through completely distinct pathways and molecular processes, a recent study has revealed that these different cell types are intimately interconnected far beyond previously postulated limits in that they share a common post-neural crest progenitor, i.e. the Schwann cell precursor. This finding raises interesting questions about the lineage relationships of hitherto unrelated cell types such as melanocytes and Schwann cells, and may provide clinical insights into mechanisms of pigmentation disorders and for cancer involving Schwann cells and melanocytes.  相似文献   

15.
Exosomes offer new insight into cancer biology with both diagnostic and therapeutic implications. Because of their cell-to-cell communication, exosomes influence tumor progression, metastasis, and therapeutic efficacy. They can be isolated from blood and other bodily fluids to reveal disease processes occurring within the body, including cancerous growth. In addition to being a reservoir of cancer biomarkers, they can be re-engineered to reinstate tumor immunity. Tumor exosomes interact with various cells of the microenvironment to confer tumor-advantageous changes that are responsible for stromal activation, induction of the angiogenic switch, increased vascular permeability, and immune escape. Exosomes also contribute to metastasis by aiding in the epithelial-to-mesenchymal transition and formation of the pre-metastatic niche. Furthermore, exosomes protect tumor cells from the cytotoxic effects of chemotherapy drugs and transfer chemoresistance properties to nearby cells. Thus, exosomes are essential to many lethal elements of cancer and it is important to understand their biogenesis and role in cancer.  相似文献   

16.
Arterial thrombosis is the single most common cause of death and disability in industrialized societies and is the primary pathogenic mechanism underlying acute myocardial infarction and ischemic stroke. Platelets play a central role in this process, and as a consequence, a great deal of effort has gone into identifying the mechanisms regulating the adhesive function of platelets. Platelet adhesion is controlled by intracellular signaling pathways, with growing evidence for a major role for phosphoinositide 3-kinases (PI3Ks) in this process. Platelets express all type I PI3K isoforms, including p110α, p110β, p110δ and p110γ, with recent evidence suggesting important roles for p110γ and p110β in regulating distinct phases of the platelet activation process. Deficiency of p110 γ or inhibition of p110β produces a marked defect in arterial thrombosis without a corresponding increase in bleeding time, raising the possibility that inhibition of one or more PI3K isoforms may represent an effective antithrombotic approach. Received 3 January 2006; received after revision 20 February 2006; accepted 20 February 2006  相似文献   

17.
Autophagy is a constitutive lysosomal catabolic pathway that degrades damaged organelles and protein aggregates. Stem cells are characterized by self-renewal, pluripotency, and quiescence; their long life span, limited capacity to dilute cellular waste and spent organelles due to quiescence, along with their requirement for remodeling in order to differentiate, all suggest that they require autophagy more than other cell types. Here, we review the current literature on the role of autophagy in embryonic and adult stem cells, including hematopoietic, mesenchymal, and neuronal stem cells, highlighting the diverse and contrasting roles autophagy plays in their biology. Furthermore, we review the few studies on stem cells, lysosomal activity, and autophagy. Novel techniques to detect autophagy in primary cells are required to study autophagy in different stem cell types. These will help to elucidate the importance of autophagy in stem cells during transplantation, a promising therapeutic approach for many diseases.  相似文献   

18.
Molecular and Cellular Basis of Regeneration and Tissue Repair   总被引:1,自引:0,他引:1  
Cell plasticity and mesenchymal-epithelial interactions are regarded as a hallmark of embryonic development and are not believed to occur extensively in the adult. Recently, adult mesenchymal stem cells were reported to differentiate in culture into a variety of mature cell types, including epithelial cells. Progress in stem and progenitor cell biology and recognition of the unique properties of such cells may enable intelligent bioengineering design of replacement skin which allows regeneration to occur in vivo. Ideally, a scaffold-free environment which stimulates skin stem cells in situ to initiate cell signals that result in regeneration rather than scar formation is required. Various skin progenitor cell types are considered along with the signalling cascades that they affect. We also discuss a mammalian model of scar-free regeneration. Many of these mechanisms, if fully understood, could be harnessed after injury to perfectly restore the skin.  相似文献   

19.
20.
Platelets are stored at 22°C, since incubation at 37°C results in loss of viability. Nonetheless, in our body (37°C), platelets survive for 8–10 days. This discrepancy has been explained in terms of deprivation of viability factors or accumulation of apoptotic factors during storage. We report that the endocannabinoid anandamide (AEA) may be one of the agents allowing platelet survival. In fact, at 37°C, human platelets enhance the expression of pro-apoptotic proteins (caspases, Bax, Bak) and decrease the expression of Bcl-xL, thus changing the Bcl-xL/Bak ratio, a key platelet biological clock. AEA or its non-hydrolyzable analogue, methanandamide, extend platelet life span, without reversing the changes in Bcl-xL/Bak ratio induced by heat stress. Instead, AEA binding to type-1 cannabinoid receptor activates Akt, which regulates, through phosphorylation of Bad, the interactions among different Bcl-2 family members. These findings could have implications for platelet collection and, potentially, for their clinical use.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号