首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silencing of DNA repair genes plays a critical role in the development of the cancer because these genes, functioning normally, would prevent the accumulation of mutations leading to carcinogenesis. Epigenetic gene silencing is an alternative mechanism to genetic gene aberration, inactivating those genes in cancer. DNA methylation and histone modification are the major factors for epigenetic regulation of gene expression. Here, we describe recent advances in understanding of epigenetic silencing of DNA repair genes and their epigenetic mechanisms involving DNA methylation and histone modification.  相似文献   

2.
3.
Epigenetic mechanisms in mammals   总被引:11,自引:1,他引:10  
DNA and histone methylation are linked and subjected to mitotic inheritance in mammals. Yet how methylation is propagated and maintained between successive cell divisions is not fully understood. A series of enzyme families that can add methylation marks to cytosine nucleobases, and lysine and arginine amino acid residues has been discovered. Apart from methyltransferases, there are also histone modification enzymes and accessory proteins, which can facilitate and/or target epigenetic marks. Several lysine and arginine demethylases have been discovered recently, and the presence of an active DNA demethylase is speculated in mammalian cells. A mammalian methyl DNA binding protein MBD2 and de novo DNA methyltransferase DNMT3A and DNMT3B are shown experimentally to possess DNA demethylase activity. Thus, complex mammalian epigenetic mechanisms appear to be dynamic yet reversible along with a well-choreographed set of events that take place during mammalian development.  相似文献   

4.
5.
6.
7.
DNA methylation is a stable but not irreversible epigenetic signal that silences gene expression. It has a variety of important functions in mammals, including control of gene expression, cellular differentiation and development, preservation of chromosomal integrity, parental imprinting and X-chromosome inactivation. In addition, it has been implicated in brain function and the development of the immune system. Somatic alterations in genomic methylation patterns contribute to the etiology of human cancers and ageing. It is tightly interwoven with the modification of histone tails and other epigenetic signals. Here we review our current understanding of the molecular enzymology of the mammalian DNA methyltransferases Dnmt1, Dnmt3a, Dnmt3b and Dnmt2 and the roles of the enzymes in the above-mentioned biological processes.  相似文献   

8.
The function of DNA methylation has been investigated in depth in vertebrate and plant genomes, establishing that it is involved in gene silencing and transposon control. Data regarding insect methylation, even if still scanty, apparently argue against evolutionary conservation of DNA methylation functions. Cytosine methylation, therefore, proves to be an epigenetic tool repeatedly used to accomplish different functions in different taxa according to a sort of epigenetic tinkering occurring during evolution.  相似文献   

9.
10.
11.
Even though every cell in a multicellular organism contains the same genes, the differing spatiotemporal expression of these genes determines the eventual phenotype of a cell. This means that each cell type contains a specific epigenetic program that needs to be replicated through cell divisions, along with the genome, in order to maintain cell identity. The stable inheritance of these programs throughout the cell cycle relies on several epigenetic mechanisms. In this review, DNA methylation and histone methylation by specific histone lysine methyltransferases (KMT) and the Polycomb/Trithorax proteins are considered as the primary mediators of epigenetic inheritance. In addition, non-coding RNAs and nuclear organization are implicated in the stable transfer of epigenetic information. Although most epigenetic modifications are reversible in nature, they can be stably maintained by self-recruitment of modifying protein complexes or maintenance of these complexes or structures through the cell cycle.  相似文献   

12.
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein–Taybi syndrome, Coffin–Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.  相似文献   

13.
Blastomere biopsy is used in preimplantation genetic diagnosis; however, the long-term implications on the offspring are poorly characterized. We previously reported a high risk of memory defects in adult biopsied mice. Here, we assessed nervous function of aged biopsied mice and further investigated the mechanism of neural impairment after biopsy. We found that aged biopsied mice had poorer spatial learning ability, increased neuron degeneration, and altered expression of proteins involved in neural degeneration or dysfunction in the brain compared to aged control mice. Furthermore, the MeDIP assay indicated a genome-wide low methylation in the brains of adult biopsied mice when compared to the controls, and most of the genes containing differentially methylated loci in promoter regions were associated with neural disorders. When we further compared the genomic DNA methylation profiles of 7.5-days postconception (dpc) embryos between the biopsy and control group, we found the whole genome low methylation in the biopsied group, suggesting that blastomere biopsy was an obstacle to de novo methylation during early embryo development. Further analysis on mRNA profiles of 4.5-dpc embryos indicated that reduced expression of de novo methylation genes in biopsied embryos may impact de novo methylation. In conclusion, we demonstrate an abnormal neural development and function in mice generated after blastomere biopsy. The impaired epigenetic reprogramming during early embryo development may be the latent mechanism contributing to the impairment of the nervous system in the biopsied mice, which results in a hypomethylation status in their brains.  相似文献   

14.
Little information is available regarding mechanistic links between epigenetic modifications and autoimmune diseases. It seems plausible to surmise that aberrant gene expression and energy metabolism would disrupt immune tolerance, which could ultimately result in autoimmune responses. Metaboloepigenetics is an emerging paradigm that defines the interrelationships between metabolism and epigenetics. Epigenetic modifications, such as the methylation/demethylation of DNA and histone proteins and histone acetylation/deacetylation can be dynamically produced and eliminated by a group of enzymes that consume several metabolites derived from various physiological pathways. Recent insights into cellular metabolism have demonstrated that environmental stimuli such as dietary exposure and nutritional status act through the variation in concentration of metabolites to affect epigenetic regulation and breakdown biochemical homeostasis. Metabolites, including S-adenosylmethionine, acetyl-CoA, nicotinamide adenine dinucleotide, α-ketoglutarate, and ATP serve as cofactors for chromatin-modifying enzymes, such as methyltransferases, deacetylases and kinases, which are responsible for chromatin remodelling. The concentration of crucial nutrients, such as glucose, glutamine, and oxygen, spatially and temporally modulate epigenetic modifications to regulate gene expression and the reaction to stressful microenvironments in disease pathology. In this review, we focus on the interaction between metabolic intermediates and epigenetic modifications, integrating environmental signals with programmes through modification of the epigenome–metabolome to speculate as to how this may influence autoimmune diseases.  相似文献   

15.
Methylation of lysine residues of histones is associated with functionally distinct regions of chromatin, and, therefore, is an important epigenetic mark. Over the past few years, several enzymes that catalyze this covalent modification on different lysine residues of histones have been discovered. Intriguingly, histone lysine methylation has also been shown to be cross-regulated by histone ubiquitination or the enzymes that catalyze this modification. These covalent modifications and their cross-talks play important roles in regulation of gene expression, heterochromatin formation, genome stability, and cancer. Thus, there has been a very rapid progress within past several years towards elucidating the molecular basis of histone lysine methylation and ubiquitination, and their aberrations in human diseases. Here, we discuss these covalent modifications with their cross-regulation and roles in controlling gene expression and stability. Received 24 September 2008; received after revision 21 November 2008; accepted 28 November 2008  相似文献   

16.
Cellular information is inherited by daughter cells through epigenetic routes in addition to genetic routes. Epigenetics, which is primarily mediated by inheritable DNA methylation and histone post-translational modifications, involves changes in the chromatin structure important for regulating gene expression. It is widely known that epigenetic control of gene expression plays an essential role in cell differentiation processes in vertebrates. Furthermore, because epigenetic changes can occur reversibly depending on environmental factors in differentiated cells, they have recently attracted considerable attention as targets for disease prevention and treatment. These environmental factors include diet, exposure to bacteria or viruses, and air pollution, of which this review focuses on the influence of bacteria on epigenetic gene control in a host. Host-bacterial interactions not only occur upon pathogenic bacterial infection but also continuously exist between commensal bacteria and the host. These bacterial stimuli play an essential role in various biological responses involving external stimuli and in maintaining physiological homeostasis by altering epigenetic markers and machinery.  相似文献   

17.
Memory   总被引:2,自引:0,他引:2  
In this review we address the idea that conservation of epigenetic mechanisms for information storage represents a unifying model in biology, with epigenetic mechanisms being utilized for cellular memory at levels from behavioral memory to development to cellular differentiation. Epigenetic mechanisms typically involve alterations in chromatin structure, which in turn regulate gene expression. An emerging idea is that the regulation of chromatin structure through histone acetylation and DNA methylation may mediate long-lasting behavioral change in the context of learning and memory. We find this idea fascinating because similar mechanisms are used for triggering and storing long-term 'memory' at the cellular level, for example when cells differentiate. An additional intriguing aspect of the hypothesis of a role for epigenetic mechanisms in information storage is that lifelong behavioral memory storage may involve lasting changes in the physical, three-dimensional structure of DNA itself.  相似文献   

18.
Pulmonary arterial hypertension (PAH) is characterized by persistent pulmonary vasoconstriction and pulmonary vascular remodeling. The pathogenic mechanisms of PAH remain to be fully clarified and measures of effective prevention are lacking. Recent studies; however, have indicated that epigenetic processes may exert pivotal influences on PAH pathogenesis. In this review, we summarize the latest research findings regarding epigenetic regulation in PAH, focusing on the roles of non-coding RNAs, histone modifications, ATP-dependent chromatin remodeling and DNA methylation, and discuss the potential of epigenetic-based therapies for PAH.  相似文献   

19.
RNase MRP is a conserved endoribonuclease, in humans consisting of a 267-nucleotide RNA associated with 7–10 proteins. Mutations in its RNA component lead to several autosomal recessive skeletal dysplasias, including cartilage-hair hypoplasia (CHH). Because the known substrates of mammalian RNase MRP, pre-ribosomal RNA, and RNA involved in mitochondrial DNA replication are not likely involved in CHH, we analyzed the effects of RNase MRP (and the structurally related RNase P) depletion on mRNAs using DNA microarrays. We confirmed the upregulation of the interferon-inducible viperin mRNA by RNAi experiments and this appeared to be independent of the interferon response. We detected two cleavage sites for RNase MRP/RNase P in the coding sequence of viperin mRNA. This is the first study providing direct evidence for the cleavage of a mRNA by RNase MRP/RNase P in human cells. Implications for the involvement in the pathophysiology of CHH are discussed.  相似文献   

20.
Biological aspects of cytosine methylation in eukaryotic cells.   总被引:7,自引:0,他引:7  
M Hergersberg 《Experientia》1991,47(11-12):1171-1185
The existence in eukaryotes of a fifth base, 5-methylcytosine, and of tissue-specific methylation patterns have been known for many years, but except for a general association with inactive genes and chromatin the exact function of this DNA modification has remained elusive. The different hypotheses regarding the role of DNA methylation in regulation of gene expression, chromatin structure, development, and diseases, including cancer are summarized, and the experimental evidence for them is discussed. Structural and functional properties of the eukaryotic DNA cytosine methyltransferase are also reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号