首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

2.
The amount of calpastatin directly available in cytosol is under the control of [Ca2+] and [cyclic AMP]. Prolonged calpain activation also promotes degradation of calpastatin. The fluctuation of calpastatin concentration in cell soluble fraction is accompanied by an initial decrease in calpastatin gene expression, followed by a fivefold increase in its expression when the inhibitor protein is degraded. This process can be conceptualized as a mechanism to regulate calpastatin availability in the cell. This conclusion is supported by the fact that calpain, the other component of this proteolytic system, undergoes changes in its levels of expression in a much more limited manner. Furthermore, this process can be observed both in cells exposed to different natural stimuli, or in other cell lines. Modification of calpastatin gene expression might represent a new tool for the in vivo control of the regulatory machinery required for the modulation of Ca2+-dependent proteolysis.Received 18 July 2003; received after revision 3 September 2003; accepted 23 September 2003  相似文献   

3.
Oxidative DNA damage to cells activates poly(ADP-ribose)polymerase-1 (PARP-1) and the poly(ADP-ribose) formed is rapidly degraded to ADP-ribose by poly(ADP-ribose)glycohydrolase (PARG). Here we show that PARP-1 and PARG control extracellular Ca2+ fluxes through melastatin-like transient receptor potential 2 channels (TRPM2) in a cell death signaling pathway. TRPM2 activation accounts for essentially the entire Ca2+ influx into the cytosol, activating caspases and causing the translocation of apoptosis inducing factor (AIF) from the inner mitochondrial membrane to the nucleus followed by cell death. Abrogation of PARP-1 or PARG function disrupts these signals and reduces cell death. ADP-ribose-loading of cells induces Ca2+ fluxes in the absence of oxidative damage, suggesting that ADP-ribose is the key metabolite of the PARP-1/PARG system regulating TRPM2. We conclude that PARP-1/PARG control a cell death signal pathway that operates between five different cell compartments and communicates via three types of chemical messengers: a nucleotide, a cation, and proteins.  相似文献   

4.
5.
Retraction of mesenchymal stromal cells supports the invasion of colorectal cancer cells (CRC) into the adjacent compartment. CRC-secreted 12(S)-HETE enhances the retraction of cancer-associated fibroblasts (CAFs) and therefore, 12(S)-HETE may enforce invasivity of CRC. Understanding the mechanisms of metastatic CRC is crucial for successful intervention. Therefore, we studied pro-invasive contributions of stromal cells in physiologically relevant three-dimensional in vitro assays consisting of CRC spheroids, CAFs, extracellular matrix and endothelial cells, as well as in reductionist models. In order to elucidate how CAFs support CRC invasion, tumour spheroid-induced CAF retraction and free intracellular Ca2+ levels were measured and pharmacological- or siRNA-based inhibition of selected signalling cascades was performed. CRC spheroids caused the retraction of CAFs, generating entry gates in the adjacent surrogate stroma. The responsible trigger factor 12(S)-HETE provoked a signal, which was transduced by PLC, IP3, free intracellular Ca2+, Ca2+-calmodulin-kinase-II, RHO/ROCK and MYLK which led to the activation of myosin light chain 2, and subsequent CAF mobility. RHO activity was observed downstream as well as upstream of Ca2+ release. Thus, Ca2+ signalling served as central signal amplifier. Treatment with the FDA-approved drugs carbamazepine, cinnarizine, nifedipine and bepridil HCl, which reportedly interfere with cellular calcium availability, inhibited CAF-retraction. The elucidation of signalling pathways and identification of approved inhibitory drugs warrant development of intervention strategies targeting tumour–stroma interaction.  相似文献   

6.
Proinsulin-connecting peptide (C-peptide) exerts physiological effects partially via stimulation of Na+, K+-ATPase. We determined the molecular mechanism by which C-peptide stimulates Na+, K+-ATPase in primary human renal tubular cells (HRTCs). Incubation of the cells with 5 nM human C-peptide at 37°C for 10 min stimulated 86Rb+ uptake by 40% (p<0.01). The carboxy-terminal pentapeptide was found to elicit 57% of the activity of the intact molecule. In parallel with ouabain-sensitive 86Rb+ uptake, C-peptide increased subunit phosphorylation and basolateral membrane (BLM) abundance of the Na+, K+-ATPase 1 and 1 subunits. The increase in BLM abundance of the Na+, K+-ATPase 1 and 1 subunits was accompanied by depletion of 1 and 1 subunits from the endosomal compartments. C-peptide action on Na+, K+-ATPase was ERK1/2-dependent in HRTCs. C-peptide-stimulated Na+, K+-ATPase activation, phosphorylation of 1-subunit and translocation of 1 and 1 subunits to the BLM were abolished by a MEK1/2 inhibitor (20 M PD98059). C-peptide stimulation of 86Rb+ uptake was also abolished by preincubation of HRTCs with an inhibitor of PKC (1 M GF109203X). C-peptide stimulated phosphorylation of human Na+, K+-ATPase subunit on Thr-Pro amino acid motifs, which form specific ERK substrates. In conclusion, C-peptide stimulates sodium pump activity via ERK1/2-induced phosphorylation of Thr residues on the subunit of Na+, K+-ATPase.Received 15 June 2004; received after revision 14 September 2004; accepted 14 September 2004  相似文献   

7.
GPR39 is a vertebrate G protein-coupled receptor related to the ghrelin/neurotensin receptor subfamily. The receptor is expressed in a range of tissues including the pancreas, gut/gastrointestinal tract, liver, kidney and in some regions of the brain. GPR39 was initially thought to be the cognitive receptor for the peptide hormone, obestatin. However, subsequent in vitro studies have failed to demonstrate binding of this peptide to the receptor. Zn2+ has been shown to be a potent stimulator of GPR39 activity via the Gαq, Gα12/13 and Gαs pathways. The potency and specificity of Zn2+ in activating GPR39 suggest it to be a physiologically important agonist. GPR39 is now emerging as an important transducer of autocrine and paracrine Zn2+ signals, impacting upon cellular processes such as insulin secretion, gastric emptying, neurotransmission and epithelial repair. This review focuses on the molecular, structural and biological properties of GPR39 and its various physiological functions.  相似文献   

8.
During the past two decades of research in T cell biology, an increasing number of distinct T cell subsets arising during the transition from naïve to antigen-experienced T cells have been identified. Recently, it has been appreciated that, in different experimental settings, distinct T cell subsets can be generated in parallel within the same immune response. While signals driving a single “lineage” path of T cell differentiation are becoming increasingly clear, it remains largely enigmatic how the phenotypic and functional diversification creating a multi-faceted T cell response is achieved. Here, we review current literature indicating that diversification is a stable trait of CD8+ T cell responses. We showcase novel technologies providing deeper insights into the process of diversification among the descendants of individual T cells, and introduce two models that emphasize either intrinsic noise or extrinsic signals as driving forces behind the diversification of single cell-derived T cell progeny populations in vivo.  相似文献   

9.
Naïve CD4+ T cells undergo massive cell proliferation upon encountering their cognate ligand. This proliferation depends upon appropriate cues from the antigen-presenting cells that have processed the antigen and present the peptide to the T cells, and requires the establishment of a cytokine environment that can support such proliferation. Expansion of antigen-specific CD4+ T cells needs to be coupled with differentiation into one of several effector/regulatory phenotypes if the priming event is to result in cells that can initially act to control the particular pathogen that elicited the response, and later to serve as memory cells to insure an appropriate response upon reintroduction of the pathogen. Here, we discuss the initiation of T helper lineage commitment, the positive feedback regulation by the cytokine environment to enhance and stabilize the differentiation into distinct T helper subsets, and the biological significance of CD4+ T cell plasticity and long-term CD4+ T cell memory.  相似文献   

10.
Increasing evidence demonstrates that Na+, K+-ATPase plays an important role in pulmonary inflammation, but the mechanism remains largely unknown. In this study, we used cardiotonic steroids as Na+, K+-ATPase inhibitors to explore the possible involvement of Na+, K+-ATPase in pulmonary epithelial inflammation. The results demonstrated that mice after ouabain inhalation developed cyclooxygenase-2-dependent acute lung inflammation. The in vitro experiments further confirmed that Na+, K+-ATPase inhibitors significantly stimulated cyclooxygenase-2 expression in lung epithelial cells of human or murine origin, the process of which was participated by multiple cis-elements and trans-acting factors. Most importantly, we first described here that Na+, K+-ATPase inhibitors could evoke a significant Hu antigen R nuclear export in lung epithelial cells, which stabilized cyclooxygenase-2 mRNA by binding with a proximal AU-rich element within its 3′-untranslated region. In conclusion, HuR-mediated mRNA stabilization opens new avenues in understanding the importance of Na+, K+-ATPase, as well as its inhibitors in inflammation.  相似文献   

11.
V-ATPases are multimeric enzymes made of two sectors, a V1 catalytic domain and a V0 membrane domain. They accumulate protons in various intracellular organelles. Acidification of synaptic vesicles by V-ATPase energizes the accumulation of neurotransmitters in these storage organelles and is therefore required for efficient synaptic transmission. In addition to this well-accepted role, functional studies have unraveled additional hidden roles of V0 in neurotransmitter exocytosis that are independent of the transport of protons. V0 interacts with SNAREs and calmodulin, and perturbing these interactions affects neurotransmitter release. Here, we discuss these data in relation with previous results obtained in reconstituted membranes and on yeast vacuole fusion. We propose that V0 could be a sensor of intra-vesicular pH that controls the exocytotic machinery, probably regulating SNARE complex assembly during the synaptic vesicle priming step, and that, during the membrane fusion step, V0 might favor lipid mixing and fusion pore stability.  相似文献   

12.
The oomycete Phytophthora infestans is the cause of late blight in potato and tomato. It is a devastating pathogen and there is an urgent need to design alternative strategies to control the disease. To find novel potential drug targets, we used Lifeact-eGFP expressing P. infestans for high resolution live cell imaging of the actin cytoskeleton in various developmental stages. Previously, we identified actin plaques as structures that are unique for oomycetes. Here we describe two additional novel actin configurations; one associated with plug deposition in germ tubes and the other with appressoria, infection structures formed prior to host cell penetration. Plugs are composed of cell wall material that is deposited in hyphae emerging from cysts to seal off the cytoplasm-depleted base after cytoplasm retraction towards the growing tip. Preceding plug formation there was a typical local actin accumulation and during plug deposition actin remained associated with the leading edge. In appressoria, formed either on an artificial surface or upon contact with plant cells, we observed a novel aster-like actin configuration that was localized at the contact point with the surface. Our findings strongly suggest a role for the actin cytoskeleton in plug formation and plant cell penetration.  相似文献   

13.
Rapid Ca2+-dependent phospholipid (PL) reorganization (scrambling) at the plasma membrane is a mechanism common to hematopoietic cells exposing procoagulant phosphatidylserine (PS). The aim of this research was to determine whether activation of the extracellular signal-regulated kinase (ERK) pathway was required for PL scrambling, based on a single report analyzing both responses induced by Ca2+ ionophores in megakaryoblastic HEL cells. Ca2+ ionophore-stimulated ERK phosphorylation was induced in platelets without external Ca2+, whereas exogenous Ca2+ entry was crucial for ERK activation in Jurkat T cells. In both cells, membrane scrambling only occurred following Ca2+ entry and was not blocked by inhibiting ERK phosphorylation. Furthermore, ERK proteins are strongly phosphorylated in transformed B lymphoblastic cell lines, which do not expose PS in their resting state. Overall, the data demonstrated that ERK activation and membrane scrambling are independent mechanisms. A. Arachiche, I. Badirou: These authors contributed equally to this work. Received 18 June 2008; received after revision 24 September 2008; accepted 1 October 2008  相似文献   

14.
Endothelial cells release ATP in response to fluid shear stress, which activates purinergic (P2) receptor-mediated signaling molecules including endothelial nitric oxide (eNOS), a regulator of vascular tone. While P2 receptor-mediated signaling in the vasculature is well studied, the role of P2Y2 receptors in shear stress-associated endothelial cell alignment, cytoskeletal alterations, and wound repair remains ill defined. To address these aspects, human umbilical vein endothelial cell (HUVEC) monolayers were cultured on gelatin-coated dishes and subjected to a shear stress of 1 Pa. HUVECs exposed to either P2Y2 receptor antagonists or siRNA showed impaired fluid shear stress-induced cell alignment, and actin stress fiber formation as early as 6 h. Similarly, when compared to cells expressing the P2Y2 Arg-Gly-Asp (RGD) wild-type receptors, HUVECs transiently expressing the P2Y2 Arg-Gly-Glu (RGE) mutant receptors showed reduced cell alignment and actin stress fiber formation in response to shear stress as well as to P2Y2 receptor agonists in static cultures. Additionally, we observed reduced shear stress-induced phosphorylation of focal adhesion kinase (Y397), and cofilin-1 (S3) with receptor knockdown as well as in cells expressing the P2Y2 RGE mutant receptors. Consistent with the role of P2Y2 receptors in vasodilation, receptor knockdown and overexpression of P2Y2 RGE mutant receptors reduced shear stress-induced phosphorylation of AKT (S473), and eNOS (S1177). Furthermore, in a scratched wound assay, shear stress-induced cell migration was reduced by both pharmacological inhibition and receptor knockdown. Together, our results suggest a novel role for P2Y2 receptor in shear stress-induced cytoskeletal alterations in HUVECs.  相似文献   

15.
Lysozyme is an important component of the innate immune system, protecting the gastrointestinal tract from infection. The aim of the present study was to determine if lysozyme is expressed in the chicken (Gallus gallus) intestine and to characterise the molecular forms expressed. Immunohistochemical staining localised lysozyme to epithelial cells of the villous epithelium along the length of the small intestine. There was no evidence for lysozyme expression in crypt epithelium and no evidence for Paneth cells. Immunoblots of chicken intestinal protein revealed three proteins: a 14-kDa band consistent with lysozyme c, and two additional bands of approximately 21 and 23 kDa, the latter consistent with lysozyme g. RT-PCR analyses confirmed that lysozyme c mRNA is expressed in 4-day, but not older chicken intestine and lysozyme g in 4- to 35-day chicken intestine. A novel chicken lysozyme g2 gene was identified by in silico analyses and mRNA for this lysozyme g2 was identified in the intestine from chickens of all ages. Chicken lysozyme g2 shows similarity with fish lysozyme g, including the absence of a signal peptide and cysteines involved in disulphide bond formation of the mammalian and bird lysozyme g proteins. Analyses using SecretomeP predict that chicken lysozyme g2 may be secreted by the non-classical secretory pathway. We conclude that lysozyme is expressed in the chicken small intestine by villous enterocytes. Lysozyme c, lysozyme g and g2 may fulfil complimentary roles in protecting the intestine.Received 4 August 2004; received after revision 1 September 2004; accepted 7 September 2004  相似文献   

16.
17.
During agonist-dependent long-term stimulation of cells, histamine receptor subtypes are frequently down-regulated. However, the mechanisms underlying the modulation of receptor expression during long-term histamine stimulation have yet to be resolved. Based on our recently reported results showing an H1-mediated down-regulation of histamine H2 receptor mRNA in endothelial cells, our aim was to characterize the mechanism controlling rapid and long-term histamine-mediated modulation of H2 receptor expression in more detail. We were able to show that the histamine-induced down-regulation of H2 receptor mRNA and cell surface expression lasting for 24 h was accompanied by augmentation of the receptor protein level in the cytoplasmatic fraction of endothelial cells for this time period. Furthermore, changes in receptor protein levels in whole-cell lysate were negligible, indicating that the rapid and prolonged modulation of cell surface H2 receptor levels by histamine was regulated solely via internalization. The role of nitric oxide (NO) as a key mediator in histamine-stimulated cell responses was underlined by subsequent studies showing the attenuation of histamine-induced H2 receptor mRNA down-regulation and protein trafficking following NO synthase isozyme inhibition.Received 11 March 2003; received after revision 11 June 2003; accepted 17 June 2003  相似文献   

18.
19.
Type 2 phosphatidic acid phosphatases (PAP2s) can be either soluble or integral membrane enzymes. In bacteria, integral membrane PAP2s play major roles in the metabolisms of glycerophospholipids, undecaprenyl-phosphate (C55-P) lipid carrier and lipopolysaccharides. By in vivo functional experiments and biochemical characterization we show that the membrane PAP2 coded by the Bacillus subtilis yodM gene is the principal phosphatidylglycerol phosphate (PGP) phosphatase of B. subtilis. We also confirm that this enzyme, renamed bsPgpB, has a weaker activity on C55-PP. Moreover, we solved the crystal structure of bsPgpB at 2.25 Å resolution, with tungstate (a phosphate analog) in the active site. The structure reveals two lipid chains in the active site vicinity, allowing for PGP substrate modeling and molecular dynamic simulation. Site-directed mutagenesis confirmed the residues important for substrate specificity, providing a basis for predicting the lipids preferentially dephosphorylated by membrane PAP2s.  相似文献   

20.
A neurotoxin, named hainantoxin-IV, was purified from the venom of the spider Selenocosmia hainana. The amino acid sequence was determined by Edman degradation, revealing it to be a 35-residue polypeptide amidated at its C terminal and including three disulfide bridges: Cys2-Cys17, Cys9-Cys24, and Cys16-Cys31 assigned by partial reduction and sequence analysis. Hainantoxin-IV shares 80% sequence identity with huwentoxin-IV from the spider S. huwena, a potent antagonist that acts at site 1 on tetrodotoxin-sensitive (TTX-S) sodium channels, suggesting that hainantoxin-IV adopts an inhibitor cystine knot structural motif like huwentoin-IV. Under whole-cell voltage-clamp conditions, this toxin has no effect on tetrodotoxin-resistant voltage-gated sodium channels in adult rat dorsal root ganglion neurons, while it blocks TTX-S sodium channels in a manner similar to huwentoxin-IV, and the actions of both toxins on sodium currents are very similar to that of tetrodotoxin. Thus, they define a new family of spider toxins affecting sodium channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号