首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 333 毫秒
1.
Redox regulation of endothelial cell fate   总被引:1,自引:1,他引:0  
  相似文献   

2.
Arteriovenous malformations occur when abnormalities of vascular patterning result in the flow of blood from arteries to veins without an intervening capillary bed. Recent work has revealed the importance of the Notch and TGF-β signaling pathways in vascular patterning. Specifically, Notch signaling has an increasingly apparent role in arterial specification and suppression of branching, whereas TGF-β is implicated in vascular smooth muscle development and remodeling under angiogenic stimuli. These physiologic roles, consequently, have implicated both pathways in the pathogenesis of arteriovenous malformation. In this review, we summarize the studies of endothelial signaling that contribute to arteriovenous malformation and the roles of genes implicated in their pathogenesis. We further discuss how endothelial signaling may contribute to vascular smooth muscle development and how knowledge of signaling pathways may provide us targets for medical therapy in these vascular lesions.  相似文献   

3.
Sorting-related receptor with A-type repeats (SORLA) is an intracellular sorting receptor that directs cargo proteins, such as kinases, phosphatases, and signaling receptors, to their correct location within the cell. The activity of SORLA assures proper function of cells and tissues, and receptor dysfunction is the underlying cause of common human malignancies, including Alzheimer’s disease, atherosclerosis, and obesity. Here, we discuss the molecular mechanisms that govern sorting of SORLA and its cargo in multiple cell types, and why genetic defects in this receptor results in devastating diseases.  相似文献   

4.
The cystic phenotype in autosomal dominant polycystic kidney disease is characterized by a profound dysfunction of many cellular signaling patterns, ultimately leading to an increase in both cell proliferation and apoptotic cell death. Disturbance of normal cellular Ca2+ signaling seems to be a primary event and is clearly involved in many pathways that may lead to both types of cellular responses. In this review, we summarize the current knowledge about the molecular and functional interactions between polycystins and multiple components of the cellular Ca2+-signaling machinery. In addition, we discuss the relevant downstream responses of the changed Ca2+ signaling that ultimately lead to increased proliferation and increased apoptosis as observed in many cystic cell types.  相似文献   

5.
Lectin-like oxidized LDL (oxLDL) receptor-1 (LOX-1, also known as OLR-1), is a class E scavenger receptor that mediates the uptake of oxLDL by vascular cells. LOX-1 is involved in endothelial dysfunction, monocyte adhesion, the proliferation, migration, and apoptosis of smooth muscle cells, foam cell formation, platelet activation, as well as plaque instability; all of these events are critical in the pathogenesis of atherosclerosis. These LOX-1-dependent biological processes contribute to plaque instability and the ultimate clinical sequelae of plaque rupture and life-threatening tissue ischemia. Administration of anti-LOX-1 antibodies inhibits atherosclerosis by decreasing these cellular events. Over the past decade, multiple drugs including naturally occurring antioxidants, statins, antiinflammatory agents, antihypertensive and antihyperglycemic drugs have been demonstrated to inhibit vascular LOX-1 expression and activity. Therefore, LOX-1 represents an attractive therapeutic target for the treatment of human atherosclerotic diseases. This review aims to integrate the current understanding of LOX-1 signaling, regulation of LOX-1 by vasculoprotective drugs, and the importance of LOX-1 in the pathogenesis of atherosclerosis.  相似文献   

6.
Activin A receptor like type 1 (ALK1) is a transmembrane serine/threonine receptor kinase in the transforming growth factor-beta receptor family that is expressed on endothelial cells. Defects in ALK1 signaling cause the autosomal dominant vascular disorder, hereditary hemorrhagic telangiectasia (HHT), which is characterized by development of direct connections between arteries and veins, or arteriovenous malformations (AVMs). Although previous studies have implicated ALK1 in various aspects of sprouting angiogenesis, including tip/stalk cell selection, migration, and proliferation, recent work suggests an intriguing role for ALK1 in transducing a flow-based signal that governs directed endothelial cell migration within patent, perfused vessels. In this review, we present an updated view of the mechanism of ALK1 signaling, put forth a unified hypothesis to explain the cellular missteps that lead to AVMs associated with ALK1 deficiency, and discuss emerging roles for ALK1 signaling in diseases beyond HHT.  相似文献   

7.
8.
BRX-235 (Iroxanadine), a novel drug developed by Biorex (Hungary), was previously characterized as a vasculoprotector against atherosclerosis, an activator of p38 kinase, and an enhancer of stress-responsive heat shock protein (Hsp) expression. The present data demonstrate that BRX-235 may improve survival of vascular endothelial cells (ECs) following ischemia/reperfusion stress. ECs cultured from human umbilical veins were exposed to hypoxia/reoxygenation to mimic ischemia/reperfusion. Caspase activation and apoptosis were monitored in the reoxygenated cells. Addition of BRX-235 (0.1–1 M) to culture medium prior to hypoxia or at start of reoxygenation significantly reduced the caspase-dependent apoptosis. The cytoprotection conferred by the pre-hypoxic drug administration was sensitive to quercetin and seems to be based on enhanced Hsp accumulation in stressed ECs. In the case of post-hypoxic drug administration, the cytoprotection was strongly inhibited by SB202190 and SB203580 and appears to be associated with enhanced p38 kinase activation in reoxygenated ECs.Received 12 May 2004; received after revision 7 September 2004; accepted 24 September 2004  相似文献   

9.
Atherosclerosis, a chronic lipid-driven inflammatory disease affecting large arteries, represents the primary cause of cardiovascular disease in the world. The local remodeling of the vessel intima during atherosclerosis involves the modulation of vascular cell phenotype, alteration of cell migration and proliferation, and propagation of local extracellular matrix remodeling. All of these responses represent targets of the integrin family of cell adhesion receptors. As such, alterations in integrin signaling affect multiple aspects of atherosclerosis, from the earliest induction of inflammation to the development of advanced fibrotic plaques. Integrin signaling has been shown to regulate endothelial phenotype, facilitate leukocyte homing, affect leukocyte function, and drive smooth muscle fibroproliferative remodeling. In addition, integrin signaling in platelets contributes to the thrombotic complications that typically drive the clinical manifestation of cardiovascular disease. In this review, we examine the current literature on integrin regulation of atherosclerotic plaque development and the suitability of integrins as potential therapeutic targets to limit cardiovascular disease and its complications.  相似文献   

10.
VEGF-driven tumor angiogenesis has been validated as a central target in several tumor types deserving of continuous and further considerations to improve the efficacy and selectivity of the current therapeutic paradigms. Epsins, a family of endocytic clathrin adaptors, have been implicated in regulating endothelial cell VEGFR2 signaling, where its inactivation leads to nonproductive leaky neo-angiogenesis and, therefore, impedes tumor development and progression. Targeting endothelial epsins is of special significance due to its lack of affecting other angiogenic-signaling pathways or disrupting normal quiescent vessels, suggesting a selective modulation of tumor angiogenesis. This review highlights seminal findings on the critical role of endothelial epsins in tumor angiogenesis and their underlying molecular events, as well as strategies to prohibit the normal function of endogenous endothelial epsins that capitalize on these newly understood mechanisms.  相似文献   

11.
The fatality of cancer predominantly results from the dissemination of primary tumor cells to distant sites and the subsequent formation of metastases. During tumor progression, some of the primary tumor cells as well as the tumor microenvironment undergo characteristic molecular changes, which are essential for the metastatic dissemination of tumor cells. In this review, we will discuss recent insights into pro-metastatic events occurring in tumor cells themselves and in the tumor stroma. Tumor cell-intrinsic alterations include the loss of cell polarity and alterations in cell-cell and cell-matrix adhesion as well as deregulated receptor kinase signaling, which together support detachment, migration and invasion of tumor cells. On the other hand, the tumor stroma, including endothelial cells, fibroblasts and cells of the immune system, is engaged in an active molecular crosstalk within the tumor microenvironment. Subsequent activation of blood vessel and lymph vessel angiogenesis together with inflammatory and immune-suppressive responses further promotes cancer cell migration and invasion, as well as initiation of the metastatic process. Received 4 July 2005; received after revision 3 November 2005; accepted 14 November 2005  相似文献   

12.
Sepsis is a leading cause of death worldwide. Increased vascular permeability is a major hallmark of sepsis. Dynamic alterations in actin fiber formation play an important role in the regulation of endothelial barrier functions and thus vascular permeability. Endothelial integrity requires a delicate balance between the formation of cortical actin filaments that maintain endothelial cell contact stability and the formation of actin stress fibers that generate pulling forces, and thus compromise endothelial cell contact stability. Current research has revealed multiple molecular pathways that regulate actin dynamics and endothelial barrier dysfunction during sepsis. These include intracellular signaling proteins of the small GTPases family (e.g., Rap1, RhoA and Rac1) as well as the molecules that are directly acting on the actomyosin cytoskeleton such as myosin light chain kinase and Rho kinases. Another hallmark of sepsis is an excessive recruitment of neutrophils that also involves changes in the actin cytoskeleton in both endothelial cells and neutrophils. This review focuses on the available evidence about molecules that control actin dynamics and regulate endothelial barrier functions and neutrophil recruitment. We also discuss treatment strategies using pharmaceutical enzyme inhibitors to target excessive vascular permeability and leukocyte recruitment in septic patients.  相似文献   

13.
Hyperlipidemia is a risk factor for atherosclerosis that is characterized by lipid accumulation, inflammatory cell infiltration, and smooth muscle cell proliferation. It is well known that hyperlipidemia is a stimulator for endothelial dysfunction and smooth muscle cell migration during vascular disease development. Recently, it was found that vessel wall contains a variable number of mesenchymal stem cells (MSCs) that are quiescent in physiological conditions, but can be activated by a variety of stimuli, e.g., increased lipid level or hyperlipidemia. Vascular MSCs displayed characteristics of stem cells which can differentiate into several types of cells, e.g., smooth muscle cells, adipocytic, chondrocytic, and osteocytic lineages. In vitro, lipid loading can induce MSC migration and chemokines secretion. After MSC migration into the intima, they play an essential role in inflammatory response and cell accumulation during the initiation and progression of atherosclerosis. In addition, MSC transplantation has been explored as a therapeutic approach to treat atherosclerosis in animal models. In this review, we aim to summarize current progress in characterizing the identity of vascular MSCs and to discuss the mechanisms involved in the response of vascular stem/progenitor cells to lipid loading, as well as to explore therapeutic strategies for vascular diseases and shed new light on regenerative medicine.  相似文献   

14.
Flow control in our vessels: vascular valves make sure there is no way back   总被引:1,自引:1,他引:0  
The efficient transport of blood and lymph relies on competent intraluminal valves that ensure unidirectional fluid flow through the vessels. In the lymphatic vessels, lack of luminal valves causes reflux of lymph and can lead to lymphedema, while dysfunction of venous valves is associated with venous hypertension, varicose veins, and thrombosis that can lead to edema and ulcerations. Despite their clinical importance, the mechanisms that regulate valve formation are poorly understood and have only recently begun to be characterized. Here, we discuss new findings regarding the development of venous and lymphatic valves that indicate the involvement of common molecular mechanisms in regulating valve formation in different vascular beds.  相似文献   

15.
Fenofibrate, a peroxisome proliferator-activated receptor (PPAR)-alpha activator, used as a normolipidemic agent, is thought to offer additional beneficial effects in atherosclerosis. Since angiogenesis is involved in plaque progression, hemorrhage, and instability, the main causes of ischemic events, this study was designed to evaluate the action of fenofibrate on angiogenesis. Our results show that fenofibrate (i) inhibits endothelial cell proliferation induced by angiogenic factors, followed at high concentrations by an increase in apoptosis, (ii) inhibits endothelial cell migration in a healing wound model, (iii) inhibits capillary tube formation in vitro, and (iv) inhibits angiogenesis in vivo. Concerning the mechanism of action, the inhibition of endothelial cell migration by fenofibrate can be explained by a disorganization of the actin cytoskeleton. At the molecular level, fenofibrate markedly decreased basic fibroblast growth factor-induced Akt activation and cyclooxygenase 2 gene expression. This inhibition of angiogenesis could participate in the beneficial effect of fenofibrate in atherosclerosis.  相似文献   

16.
17.
18.
“Jnking” atherosclerosis   总被引:1,自引:0,他引:1  
Numerous studies in animal models established a key role of the C-jun N-terminal kinase (JNK) family (JNK1, JNK2 and JNK3) in numerous pathological conditions, including cancer, cardiac hypertrophy and failure, neurodegenerative disorders, diabetes, arthritis and asthma. A possible function of JNK in atherosclerosis remained uncertain since conclusions have mainly been based on in vitro studies investigating endothelial cell activation, T-effector cell differentiation and proliferation of vascular smooth muscle cells, all of which represent crucial cellular processes involved in atherosclerosis. However, recent experiments demonstrated that macrophage-restricted deletion of JNK2 was sufficient to efficiently reduce atherosclerosis in mice. Furthermore, it has been shown that JNK2 specifically promotes scavenger receptor A-mediated foam cell formation, an essential step during early atherogenesis, which occurs when vascular macrophages internalize modified lipoproteins. Thus, specific inhibition of JNK2 activity may emerge as a novel and promising therapeutic approach to attenuate atheroma formation in the future. In this review, we discuss JNK-dependent cellular and molecular mechanisms underlying atherosclerosis. Received 9 June 2005; received after revision 18 July 2005; accepted 18 July 2005  相似文献   

19.
Profilins were discovered in the 1970s and were extensively studied for their significant physiological roles. Profilin1 is the most prominent isoform and has drawn special attention due to its role in the cytoskeleton, cell signaling, and its link to conditions such as cancer and vascular hypertrophy. Recently, multiple mutations in the profilin1 gene were linked to amyotrophic lateral sclerosis (ALS). In this review, we will discuss the physiological and pathological roles of profilin1. We will further highlight the cytoskeletal function and dysfunction caused by profilin1 dysregulation. Finally, we will discuss the implications of mutant profilin1 in various diseases with an emphasis on its contribution to the pathogenesis of ALS.  相似文献   

20.
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号