首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The intestinal epithelium forms a highly active functional interface between the relatively sterile internal body surfaces and the enormously complex and diverse microbiota that are contained within the lumen. Genetic models that allow for manipulation of genes specifically in the intestinal epithelium have provided an avenue to understand the diverse set of pathways whereby intestinal epithelial cells (IECs) direct the immune state of the mucosa associated with homeostasis versus either productive or non-productive inflammation as occurs during enteropathogen invasion or inflammatory bowel disease (IBD), respectively. These pathways include the unfolded protein response (UPR) induced by stress in the endoplasmic reticulum (ER), autophagy, a self-cannibalistic pathway important for intracellular bacterial killing and proper Paneth cell function as well as the interrelated functions of NOD2/NF-κB signaling which also regulate autophagy induction. Multiple genes controlling these IEC pathways have been shown to be genetic risk factors for human IBD. This highlights the importance of these pathways not only for proper IEC function but also suggesting that IECs may be one of the cellular originators of organ-specific and systemic inflammation as in IBD.  相似文献   

2.
Inflammatory bowel diseases (IBD) such as ulcerative colitis and Crohn’s disease are chronic and relapsing conditions, characterized by abdominal pain, diarrhea, bleeding and malabsorption. IBD has been considered a hyperinflammatory state due to disturbed interactions between the immune system and the commensal bacterial flora of the gut. However, there is evidence that Crohn’s disease might be the consequence of a reduced release of pro-inflammatory cytokines and an impaired acute inflammatory response, thereby suggesting that IBD might be an immunodeficiency rather than an excessive inflammatory reaction. This theory has been supported by observations in patients with primary immunodeficiencies such as the Wiskott–Aldrich syndrome and IPEX (immunodysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). In contrary, defects in the anti-inflammatory down-regulation of the immune response as they are seen in patients with Mendelian defects in the IL10 signaling pathway support the hyper-inflammatory theory. In this review, we describe and discuss primary immunodeficiencies associated with IBD and show that the bowel is a highly sensitive indicator of dysregulations, making IBD a model disease to study and identify key regulators required to balance the human mucosal immune system.  相似文献   

3.
MicroRNAs (miRNAs), a novel class of molecules regulating gene expression, have been hailed as modulators of many biological processes and disease states. Recent studies demonstrated an important role of miRNAs in the processes of inflammation and cancer, however, there are little data implicating miRNAs in peripheral pain. Bladder pain syndrome/interstitial cystitis (BPS/IC) is a clinical syndrome of pelvic pain and urinary urgency/frequency in the absence of a specific cause. BPS is a chronic inflammatory condition that might share some of the pathogenetic mechanisms with its common co-morbidities inflammatory bowel disease (IBD), asthma and autoimmune diseases. Using miRNA profiling in BPS and the information about validated miRNA targets, we delineated the signaling pathways activated in this and other inflammatory pain disorders. This review projects the miRNA profiling and functional data originating from the research in bladder cancer and immune-mediated diseases on the BPS-specific miRNAs with the aim to gain new insight into the pathogenesis of this enigmatic disorder, and highlighting the common regulatory mechanisms of pain and inflammation.  相似文献   

4.
Selenoprotein W: a review   总被引:3,自引:0,他引:3  
Purification of selenoprotein W (Se-W) from rat and monkey muscles was shown to exist in multiple forms: with or without reduced glutathione and/or a 41-Da moiety (identity still unknown). TGA is located at coding position 13 in Se-W complementary DNA (cDNA) from all five species studied (rats, mice, sheep, human and monkey). TGA is also the stop codon in the rodents and sheep cDNA, but TAA is the stop codon in primates. There is an 80% homology of the nucleotide sequence in the coding region among the five species of animals, and the predicted amino acid sequences are 83% identical (rodents identical and primates identical). Se-W levels are highest in muscle, heart and brain from sheep and primates, but very low in rodent hearts. Studies with tissue cultures of muscle and brain cells indicated that selenium influenced Se-W levels. Although the metabolic function of Se-W is unknown, preliminary data suggest that it has an antioxidant function.  相似文献   

5.
Modeling online auction prices is a popular research topic among statisticians and marketing analysts. Recent research mainly focuses on two directions: one is the functional data analysis (FDA) approach, in which the price–time relationship is modeled by a smooth curve, and the other is the point process approach, which directly models the arrival process of bidders and bids. In this paper, a novel model for the bid arrival process using a self‐exciting point process (SEPP) is proposed and applied to forecast auction prices. The FDA and point process approaches are linked together by using functional data analysis technique to describe the intensity of the bid arrival point process. Using the SEPP to model the bid arrival process, many stylized facts in online auction data can be captured. We also develop a simulation‐based forecasting procedure using the estimated SEPP intensity and historical bidding increment. In particular, prediction interval for the terminal price of merchandise can be constructed. Applications to eBay auction data of Harry Potter books and Microsoft Xbox show that the SEPP model provides more accurate and more informative forecasting results than traditional methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
The human selenoproteome: recent insights into functions and regulation   总被引:2,自引:0,他引:2  
Selenium (Se) is a nutritional trace mineral essential for various aspects of human health that exerts its effects mainly through its incorporation into selenoproteins as the amino acid, selenocysteine. Twenty-five selenoprotein genes have been identified in humans and several selenoproteins are broadly classified as antioxidant enzymes. As progress is made on characterizing the individual members of this protein family, however, it is becoming clear that their properties and functions are quite diverse. This review summarizes recent insights into properties of individual selenoproteins such as tissue distribution, subcellular localization, and regulation of expression. Also discussed are potential roles the different selenoproteins play in human health and disease.  相似文献   

7.
Parkinson's disease (PD) is characterized by a progressive loss of dopaminergic neurons in the substantia nigra. The cause of neuronal death in PD is largely unknown, but several genetic loci, including PTEN-induced putative kinase 1 (PINK1), have been linked to early onset autosomal recessive forms of familial PD. PINK1 encodes a serine/threonine kinase, which phosphorylates several substrates and consequently leads to cell protection against apoptosis induced by various stresses. In addition, research has shown that inflammation largely contributes to the pathogenesis of PD, but the functional link between PINK1 and PD-linked neuroinflammation remains poorly understood. Therefore, in the present study, we investigated the functional role of PINK1 in interleukin (IL)-1β-mediated inflammatory signaling. We show that PINK1 specifically binds to TRAF6 and TAK1, and facilitates the autodimerization and autoubiquitination of TRAF6. PINK1 also enhances the association between TRAF6 and TAK1, phosphorylates TAK1, and stimulates polyubiquitination of TAK1. Furthermore, PINK1 leads to the potentiation of IL-1β-mediated NF-κB activity and cytokine production. These findings suggest that PINK1 positively regulates two key molecules, TRAF6 and TAK1, in the IL-1β-mediated signaling pathway, consequently up-regulating their downstream inflammatory events.  相似文献   

8.
Crohn’s disease and ulcerative colitis are both associated with an increased risk of inflammation-associated colorectal carcinoma. Colitis-associated cancer (CAC) is one of the most important causes for morbidity and mortality in patients with inflammatory bowel diseases (IBD). Colitis-associated neoplasia distinctly differs from sporadic colorectal cancer in its biology and the underlying mechanisms. This review discusses the molecular mechanisms of CAC and summarizes the most important genetic alterations and signaling pathways involved in inflammatory carcinogenesis. Then, clinical translation is evaluated by discussing new endoscopic techniques and their contribution to surveillance and early detection of CAC. Last, we briefly address different types of concepts for prevention (i.e., anti-inflammatory therapeutics) and treatment (i.e., surgical intervention) of CAC and give an outlook on this important aspect of IBD.  相似文献   

9.
In addition to their established role as a physical barrier to invading pathogens and other harmful agents, intestinal epithelial cells (IEC) are actively involved in local immune reactions. In the past years, evidence has accumulated suggesting the role of IEC in the immunopathology of intestinal inflammatory disorders (IBD). Recent advances in research on bacteriophages strongly suggest that—in addition to their established antibacterial activity—they have immunomodulating properties that are potentially useful in the clinic. We suggest that these immunomodulating phage activities targeting IEC may open novel treatment perspectives in disorders of the alimentary tract, particularly IBD.  相似文献   

10.
Following the initial discovery that adipose tissue actively synthesizes and secretes cytokines, obesity-induced inflammation has been implicated in the etiology of a host of disease states related to obesity, including cardiovascular disease and type II diabetes. Interestingly, a growing body of evidence similarly implicates sphingolipids as prime instigators in these same diseases. From the recent discovery that obesity-related inflammatory pathways modulate sphingolipid metabolism comes a novel perspective—sphingolipids may act as the dominant mediators of deleterious events stemming from obesity-induced inflammation. This paradigm may identify sphingolipids as an effective target for future therapeutics aimed at ameliorating diseases associated with chronic inflammation.  相似文献   

11.
The role of inflammation in sporadic and familial Parkinson’s disease   总被引:1,自引:1,他引:0  
The etiology of Parkinson’s disease (PD) is complex and most likely involves numerous environmental and heritable risk factors. Interestingly, many genetic variants, which have been linked to familial forms of PD or identified as strong risk factors, also play a critical role in modulating inflammatory responses. There has been considerable debate in the field as to whether inflammation is a driving force in neurodegeneration or simply represents a response to neuronal death. One emerging hypothesis is that inflammation plays a critical role in the early phases of neurodegeneration. In this review, we will discuss emerging aspects of both innate and adaptive immunity in the context of the pathogenesis of PD. We will highlight recent data from genetic and functional studies that strongly support the theory that genetic susceptibility plays an important role in modulating immune pathways and inflammatory reactions, which may precede and initiate neuronal dysfunction and subsequent neurodegeneration. A detailed understanding of such cellular and molecular inflammatory pathways is crucial to uncover pathogenic mechanisms linking sporadic and hereditary PD and devise tailored neuroprotective interventions.  相似文献   

12.
The exact cause of Alzheimer’s disease (AD) is still unknown, but the deposition of amyloid-β (Aβ) plaques and chronic inflammation indicates that immune disturbances are involved in AD pathogenesis. Recent genetic studies have revealed that many candidate genes are expressed in both microglia and myeloid cells which infiltrate into the AD brains. Invading myeloid cells controls the functions of resident microglia in pathological conditions, such as AD pathology. AD is a neurologic disease with inflammatory component where the immune system is not able to eliminate the perpetrator, while, concurrently, it should prevent neuronal injuries induced by inflammation. Recent studies have indicated that AD brains are an immunosuppressive microenvironment, e.g., microglial cells are hyporesponsive to Aβ deposits and anti-inflammatory cytokines enhance Aβ deposition. Immunosuppression is a common element in pathological disorders involving chronic inflammation. Studies on cancer-associated inflammation have demonstrated that myeloid-derived suppressor cells (MDSCs) have a crucial role in the immune escape of tumor cells. Immunosuppression is not limited to tumors, since MDSCs can be recruited into chronically inflamed tissues where inflammatory mediators enhance the proliferation and activation of MDSCs. AD brains express a range of chemokines and cytokines which could recruit and expand MDSCs in inflamed AD brains and thus generate an immunosuppressive microenvironment. Several neuroinflammatory disorders, e.g., the early phase of AD pathology, have been associated with an increase in the level of circulating MDSCs. We will elucidate the immunosuppressive armament of MDSCs and present evidences in support of the crucial role of MDSCs in the pathogenesis of AD.  相似文献   

13.
The inflammasome adapter ASC links activated inflammasome sensors to the effector molecule pro-caspase-1. Recruitment of pro-caspase-1 to ASC promotes the autocatalytic activation of caspase-1, which leads to the release of pro-inflammatory cytokines, such as IL-1β. Upon triggering of inflammasome sensors, ASC assembles into large helical fibrils that interact with each other serving as a supramolecular signaling platform termed the ASC speck. Alternative splicing, post-translational modifications of ASC, as well as interaction with other proteins can perturb ASC function. In several inflammatory diseases, ASC specks can be found in the extracellular space and its presence correlates with poor prognosis. Here, we review the role of ASC in inflammation, and focus on the structural mechanisms that lead to ASC speck formation, the regulation of ASC function during inflammasome assembly, and the importance of ASC specks in disease.  相似文献   

14.
It has long been thought that astrocytes, like other glial cells, simply provide a support mechanism for neuronal function in the healthy and inflamed central nervous system (CNS). However, recent evidence suggests that astrocytes play an active and dual role in CNS inflammatory diseases such as multiple sclerosis (MS). Astrocytes not only have the ability to enhance immune responses and inhibit myelin repair, but they can also be protective and limit CNS inflammation while supporting oligodendrocyte and axonal regeneration. The particular impact of these cells on the pathogenesis and repair of an inflammatory demyelinating process is dependent upon a number of factors, including the stage of the disease, the type and microenvironment of the lesion, and the interactions with other cell types and factors that influence their activation. In this review, we summarize recent data supporting the idea that astrocytes play a complex role in the regulation of CNS autoimmunity.  相似文献   

15.
Inflammation of the nasal (rhinitis) and sinus mucosa (sinusitis) are prevalent medical conditions of the upper airways that are concurrent in many patients; hence the terminology “rhinosinusitis”. The disease status is further defined to be “chronic” in case symptoms persist for more than 12 weeks without resolution. A diverse spectrum of external factors including viral and bacterial insults together with epithelial barrier malfunctions could be implicated in the chronicity of the inflammatory responses in chronic rhinosinusitis (CRS). However, despite massive research efforts in an attempt to unveil the pathophysiology, the exact reason for a lack of resolution still remains poorly understood. A novel set of molecules that could be implicated in sustaining the inflammatory reaction may be found within the host itself. Indeed, besides mediators of inflammation originating from outside, some endogenous intracellular and/or extracellular matrix (ECM) components from the host can be released into the extracellular space upon damage induced during the initial inflammatory reaction where they gain functions distinct from those during normal physiology. These “host-self” molecules are known to modulate inflammatory responses under pathological conditions, potentially preventing resolution and contributing to the development of chronic inflammation. These molecules are collectively classified as damage-associated molecular patterns (DAMPs). This review summarizes the current knowledge regarding DAMPs in upper airway pathologies, also covering those that were previously investigated for their intracellular and/or ECM functions often acting as an antimicrobial agent or implicated in tissue/cell homeostasis, and for which their function as a danger signaling molecule was not assessed. It is, however, of importance to assess these molecules again from a point of view as a DAMP in order to further unravel the pathogenesis of CRS.  相似文献   

16.
Cell death is a major determinant of inflammatory disease severity. Whether cells live or die during inflammation largely depends on the relative success of the pro-survival process of autophagy versus the pro-death process of apoptosis. These processes interact and influence each other during inflammation and there is a checkpoint at which cells irrevocably commit to either one pathway or another. This review will discuss the concept of the autophagy/apoptosis checkpoint and its importance during inflammation, the mechanisms of inflammation leading up to the checkpoint, and how the checkpoint is regulated. Understanding these concepts is important since manipulation of the autophagy/apoptosis checkpoint represents a novel opportunity for treatment of inflammatory diseases caused by too much or too little cell death.  相似文献   

17.
Subcutaneous injection of nonspecific irritants such as magnesium silicate (talc) provokes granulomatous inflammation in the rat. Part of the acute phase response (APR) in these animals is the loss of trabecular bone at sites distant from the site of inflammation. To assess the possible involvement of vitamin D in the bone loss, we studied the development of the acute phase response in vitamin D-deprived rats. The serum APR provoked by subcutaneous inflammation in rachitic rats consisted of hypozincemia, hypercupremia, increased, alkaline phosphatase activity and adrenocorticotropic hormone (ACTH) concentration, and was similar to that in control animals except for the absence of hypoferremia. Control rats with talc-induced subcutaneous inflammation also had splenomegaly and decreased total and mononuclear peripheral blood cell counts, while subcutaneous inflammation did not induce spleen changes in rachitic rats. Subcutaneous inflammation induced the loss of trabecular bone and decreased the osteoblastic cell count in tibial metaphyses in control animals. Rachitic rats had abundant osteoid on trabecular surfaces, and the number of osteoblasts and osteoclasts was comparable to that of the controls. Subcutaneous inflammation did not affect any of the bone parameters in rachitic rats. These results indicate that vitamin D plays an important role in the generation of the acute phase response during inflammation, particularly in the induction of spleen and bone cell changes. The discrepancy of the blood on one hand and bone and spleen indices of the APR on the other, indicate that there may be divergent pathways in the generation of the inflammatory response, some of which may be dependent on vitamin D.  相似文献   

18.
Chronic obstructive pulmonary disease (COPD) is a leading cause of mortality worldwide. COPD exacerbation, or episodic worsening of symptoms, often results in hospitalization and increased mortality rates. Airway infections by new bacterial strains, such as nontypeable Haemophilus influenzae (NTHi), are a major cause of COPD exacerbation. NTHi express lipooligosaccharides that contain sialic acids, and may interact with Siglec-14, a sialic acid recognition protein on myeloid cells that serves as an activating signal transduction receptor. A null allele polymorphism in SIGLEC14 may attenuate the inflammatory responses to NTHi by eliminating Siglec-14 expression. We asked if the loss of Siglec-14 attenuates the inflammatory response by myeloid cells against NTHi, and if the SIGLEC14-null polymorphism has any effect on COPD exacerbation. We found that NTHi interacts with Siglec-14 to enhance proinflammatory cytokine production in a tissue culture model. Inhibitors of the Syk tyrosine kinase suppress this response. Loss of Siglec-14, due to SIGLEC14-null allele homozygosity, is associated with a reduced risk of COPD exacerbation in a Japanese patient population. Taken together, Siglec-14 and its downstream signaling pathway facilitate the “infection–inflammation–exacerbation” axis of COPD disease progression, and may represent promising targets for therapeutic intervention.  相似文献   

19.
Mammalian thioredoxin reductase (TrxR) is a selenoprotein with three existing isoenzymes (TrxR1, TrxR2, and TrxR3), which is found primarily intracellularly but also in extracellular fluids. The main substrate thioredoxin (Trx) is similarly found (as Trx1 and Trx2) in various intracellular compartments, in blood plasma, and is the cell’s major disulfide reductase. Thioredoxin reductase is necessary as a NADPH-dependent reducing agent in biochemical reactions involving Trx. Genetic and environmental factors like selenium status influence the activity of TrxR. Research shows that the Trx/TrxR system plays a significant role in the physiology of the adipose tissue, in carbohydrate metabolism, insulin production and sensitivity, blood pressure regulation, inflammation, chemotactic activity of macrophages, and atherogenesis. Based on recent research, it has been reported that the modulation of the Trx/TrxR system may be considered as a new target in the management of the metabolic syndrome, insulin resistance, and type 2 diabetes, as well as in the treatment of hypertension and atherosclerosis. In this review evidence about a possible role of this system as a marker of the metabolic syndrome is reported.  相似文献   

20.
Interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha) play dominant roles in mediating the progression of many inflammatory joint diseases, including rheumatoid arthritis in humans, collagen-induced arthritis in mice and rats, and adjuvant arthritis in rats. Blockade of either cytokine partially controls these diseases. The present study investigated the value of combination anti-cytokine therapy in arthritis: the efficacy of IL-1 receptor antagonist (IL-1ra) and 30 kDa polyethylene glycol (PEG)-conjugated soluble TNF receptor type I (PEG sTNF-RI) given together was assessed in Lewis rats with adjuvant arthritis. Administration of either IL-1ra or PEG sTNF-RI partially alleviated joint inflammation, loss of bone mineral density, and loss of body weight. In contrast, combination of these anti-cytokine treatments exhibited a synergistic capacity to inhibit these changes, even when combining doses of IL-1ra and PEG sTNF-RI that did not affect lesion severity when used alone. Statistical analysis of these adjuvant arthritis data using the isobologram method proved that IL-1ra and PEG sTNF-RI were clearly synergistic in inhibiting inflammation, loss of bone mineral density, loss of body weight, and histopathologic parameters of inflammation and joint destruction. These results suggest that treating autoimmune arthritic diseases with combinations of anti-IL-1 and anti-TNF molecules will achieve superior efficacy compared to the use of a single class of anti-cytokine agent and may allow for dose reductions that could prove useful in minimizing potential side effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号