首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cystic fibrosis transmembrane conductance regulator (CFTR) is an anion channel expressed in the apical membrane of epithelia. Mutations in the CFTR gene are the cause of cystsic fibrosis. CFTR is the only ABC-protein that constitutes an ion channel pore forming subunit. CFTR gating is regulated in complex manner as phosphorylation is mandatory for channel activity and gating is directly regulated by binding of ATP to specific intracellular sites on the CFTR protein. This review covers our current understanding on the gating mechanism in CFTR and illustrates the relevance of alteration of these mechanisms in the onset of cystic fibrosis.  相似文献   

2.
The Cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel controls salt and water transport across epithelial tissues. Alterations in the activity of this ion channel lead to two major human diseases: cystic fibrosis (low CFTR activity) and secretory diarrhea (excessive CFTR activity). The goal of this article is to review recent developments in our understanding of two aspects of CFTR biology: (i) interactions between CFTR domains (intramolecular interactions) that control the gating of this epithelial chloride channel and (ii) interactions between CFTR and other proteins (intermolecular interactions) that couple the activity of this ion channel to additional cellular processes in epithelial cells (e.g. membrane traffic). Clarifying the nature of these interactions may lead to the development of novel strategies for treating diseases that involve the CFTR chloride channel. Received 12 October 1999; accepted 31 December 1999  相似文献   

3.
The cystic fibrosis transmembrane conductance regulator (CFTR) is responsible for the disease cystic fibrosis (CF). It is a membrane protein belonging to the ABC transporter family functioning as a chloride/anion channel in epithelial cells around the body. There are over 1500 mutations that have been characterised as CF-causing; the most common of these, accounting for ~70 % of CF cases, is the deletion of a phenylalanine at position 508. This leads to instability of the nascent protein and the modified structure is recognised and then degraded by the ER quality control mechanism. However, even pharmacologically ‘rescued’ F508del CFTR displays instability at the cell’s surface, losing its channel function rapidly and it is rapidly removed from the plasma membrane for lysosomal degradation. This review will, therefore, explore the link between stability and structure/function relationships of membrane proteins and CFTR in particular and how approaches to study CFTR structure depend on its stability. We will also review the application of a fluorescence labelling method for the assessment of the thermostability and the tertiary structure of CFTR.  相似文献   

4.
The cystic fibrosis transmembrane conductance regulator (CFTR) protein is a member of the ATP-binding cassette (ABC) transporter superfamily that functions as an ATP-gated channel. Considerable progress has been made over the last years in the understanding of the molecular basis of the CFTR functions, as well as dysfunctions causing the common genetic disease cystic fibrosis (CF). This review provides a global overview of the theoretical studies that have been performed so far, especially molecular modelling and molecular dynamics (MD) simulations. A special emphasis is placed on the CFTR-specific evolution of an ABC transporter framework towards a channel function, as well as on the understanding of the effects of disease-causing mutations and their specific modulation. This in silico work should help structure-based drug discovery and design, with a view to develop CFTR-specific pharmacotherapeutic approaches for the treatment of CF in the context of precision medicine.  相似文献   

5.
CFTR protein is an ion channel regulated by cAMP-dependent phosphorylation and expressed in many types of epithelial cells. CFTR-mediated chloride and bicarbonate secretion play an important role in the respiratory and gastrointestinal systems. Pharmacological modulators of CFTR represent promising drugs for a variety of diseases. In particular, correctors and potentiators may restore the activity of CFTR in cystic fibrosis patients. Potentiators are also potentially useful to improve mucociliary clearance in patients with chronic obstructive pulmonary disease. On the other hand, CFTR inhibitors may be useful to block fluid and electrolyte loss in secretory diarrhea and slow down the progression of polycystic kidney disease.  相似文献   

6.
Cystic fibrosis transmembrane conductance regulator (CFTR), involved in cystic fibrosis (CF), is a chloride channel belonging to the ATP-binding cassette (ABC) superfamily. Using the experimental structure of Sav1866 as template, we previously modeled the human CFTR structure, including membrane-spanning domains (MSD) and nucleotide-binding domains (NBD), in an outward-facing conformation (open channel state). Here, we constructed a model of the CFTR inward-facing conformation (closed channel) on the basis of the recent corrected structures of MsbA and compared the structural features of those two states of the channel. Interestingly, the MSD:NBD coupling interfaces including F508 (ΔF508 being the most common CF mutation) are mainly left unchanged. This prediction, completed by the modeling of the regulatory R domain, is supported by experimental data and provides a molecular basis for a better understanding of the functioning of CFTR, especially of the structural features that make CFTR the unique channel among the ABC transporters.  相似文献   

7.
Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial–mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.  相似文献   

8.
The cystic fibrosis transmembrane conductance regulator (CFTR), the defective protein in cystic fibrosis, is an anion channel activated by protein kinase A phosphorylation. The regulatory domain (RD) of CFTR has multiple phosphorylation sites, and is responsible for channel activation. This domain is intrinsically disordered, rendering the structural analysis a difficult task, as high-resolution techniques are barely applicable. In this work, we obtained a biophysical characterization of the native and phosphorylated RD in solution by employing complementary structural methods. The native RD has a gyration radius of 3.25 nm, and a maximum molecular dimension of 11.4 nm, larger than expected for a globular protein of the same molecular mass. Phosphorylation causes compaction of the structure, yielding a significant reduction of the gyration radius, to 2.92 nm, and on the maximum molecular dimension to 10.2 nm. Using an ensemble optimization method, we were able to generate a low-resolution, three-dimensional model of the native and the phosphorylated RD based on small-angle X-ray scattering data. We have obtained the first experiment-based model of the CFTR regulatory domain, which will be useful to understand the molecular mechanisms of normal and pathological CFTR functioning.  相似文献   

9.
Defective function of the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) causes CF, the most frequent lethal inherited disease among the Caucasian population. The structure of this chloride ion channel includes two nucleotide-binding domains (NBDs), whose ATPase activity controls channel gating. Recently, the experimental structures of mouse and human CFTR NBD1 and our model of the human CFTR NBD1/NBD2 heterodimer have provided new insights into specific structural features of the CFTR NBD dimer. In the present work, we provide a structural classification of CF-causing mutations which may complement the existing functional classification. Our analysis also identified amino acid residues which may play a critical role in interdomain interaction and are located at the NBD1-NBD2 interface or on the surface of the dimer. In particular, a cluster of aromatic amino acids, which includes F508 and straddles the two NBDs, might be directly involved in the interaction of the NBD1/NBD2 heterodimer with the channel-forming membrane-spanning domains.Received 24 May 2005; received after revision 13 June 2005; accepted 18 June 2005  相似文献   

10.
Cystic fibrosis transmembrane conductance regulator (CFTR) channel gating is predominantly regulated by protein kinase A (PKA)-dependent phosphorylation. In addition to regulating CFTR channel activity, PKA phosphorylation is also involved in enhancing CFTR trafficking and mediating conformational changes at the interdomain interfaces of the protein. The major cystic fibrosis (CF)-causing mutation is the deletion of phenylalanine at position 508 (F508del); it causes many defects that affect CFTR trafficking, stability, and gating at the cell surface. Due to the multiple roles of PKA phosphorylation, there is growing interest in targeting PKA-dependent signaling for rescuing the trafficking and functional defects of F508del-CFTR. This review will discuss the effects of PKA phosphorylation on wild-type CFTR, the consequences of CF mutations on PKA phosphorylation, and the development of therapies that target PKA-mediated signaling.  相似文献   

11.
CFTR biogenesis starts with its co-translational insertion into the membrane of endoplasmic reticulum and folding of the cytosolic domains, towards the acquisition of a fully folded compact native structure. Efficiency of this process is assessed by the ER quality control system that allows the exit of folded proteins but targets unfolded/misfolded CFTR to degradation. If allowed to leave the ER, CFTR is modified at the Golgi and reaches the post-Golgi compartments to be delivered to the plasma membrane where it functions as a cAMP- and phosphorylation-regulated chloride/bicarbonate channel. CFTR residence at the membrane is a balance of membrane delivery, endocytosis, and recycling. Several adaptors, motor, and scaffold proteins contribute to the regulation of CFTR stability and are involved in continuously assessing its structure through peripheral quality control systems. Regulation of CFTR biogenesis and traffic (and its dysregulation by mutations, such as the most common F508del) determine its overall activity and thus contribute to the fine modulation of chloride secretion and hydration of epithelial surfaces. This review covers old and recent knowledge on CFTR folding and trafficking from its synthesis to the regulation of its stability at the plasma membrane and highlights how several of these steps can be modulated to promote the rescue of mutant CFTR.  相似文献   

12.
Voltage-gated calcium channels are important mediators of calcium influx into electrically excitable cells. The amount of calcium entering through this family of channel proteins is not only determined by the functional properties of channels embedded in the plasma membrane but also by the numbers of channels that are expressed at the cell surface. The trafficking of channels is controlled by numerous processes, including co-assembly with ancillary calcium channel subunits, ubiquitin ligases, and interactions with other membrane proteins such as G protein coupled receptors. Here we provide an overview about the current state of knowledge of calcium channel trafficking to the cell membrane, and of the mechanisms regulating the stability and internalization of this important ion channel family.  相似文献   

13.
The major route of protein translocation in bacteria is the so-called general secretion pathway (Sec-pathway). This route has been extensively studied in Escherichia coli and other bacteria. The movement of preproteins across the cytoplasmic membrane is mediated by a multimeric membrane protein complex called translocase. The core of the translocase consists of a proteinaceous channel formed by an oligomeric assembly of the heterotrimeric membrane protein complex SecYEG and the peripheral adenosine triphosphatase (ATPase) SecA as molecular motor. Many secretory proteins utilize the molecular chaperone SecB for targeting and stabilization of the unfolded state prior to translocation, while most nascent inner membrane proteins are targeted to the translocase by the signal recognition particle and its membrane receptor. Translocation is driven by ATP hydrolysis and the proton motive force. In the last decade, genetic and biochemical studies have provided detailed insights into the mechanism of preprotein translocation. Recent crystallographic studies on SecA, SecB and the SecYEG complex now provide knowledge about the structural features of the translocation process. Here, we will discuss the mechanistic and structural basis of the translocation of proteins across and the integration of membrane proteins into the cytoplasmic membrane.Received 10 January 2003; received after revision 2 April 2003; accepted 4 April 2003  相似文献   

14.
Role of CFTR in epithelial physiology   总被引:1,自引:1,他引:0  
Salt and fluid absorption and secretion are two processes that are fundamental to epithelial function and whole body fluid homeostasis, and as such are tightly regulated in epithelial tissues. The CFTR anion channel plays a major role in regulating both secretion and absorption in a diverse range of epithelial tissues, including the airways, the GI and reproductive tracts, sweat and salivary glands. It is not surprising then that defects in CFTR function are linked to disease, including life-threatening secretory diarrhoeas, such as cholera, as well as the inherited disease, cystic fibrosis (CF), one of the most common life-limiting genetic diseases in Caucasian populations. More recently, CFTR dysfunction has also been implicated in the pathogenesis of acute pancreatitis, chronic obstructive pulmonary disease (COPD), and the hyper-responsiveness in asthma, underscoring its fundamental role in whole body health and disease. CFTR regulates many mechanisms in epithelial physiology, such as maintaining epithelial surface hydration and regulating luminal pH. Indeed, recent studies have identified luminal pH as an important arbiter of epithelial barrier function and innate defence, particularly in the airways and GI tract. In this chapter, we will illustrate the different operational roles of CFTR in epithelial function by describing its characteristics in three different tissues: the airways, the pancreas, and the sweat gland.  相似文献   

15.
16.
The plant nuclear envelope   总被引:3,自引:0,他引:3  
This review summarizes our present knowledge about the composition and function of the plant nuclear envelope. Compared with animals or yeast, our molecular knowledge of the nuclear envelope in higher plants is in its infancy. However, there are fundamental differences between plants and animals in the structure and function of the nuclear envelope. This review will compare and contrast these differences for nuclear pore complexes, nuclear transport, inner nuclear envelope proteins and the role of the nuclear envelope during mitosis. In some cases, seemingly 'novel' aspects of plant nuclear envelope function may provide new insight into the animal cell nucleus.  相似文献   

17.
Gap junctions consist of arrays of intercellular channels composed of integral membrane proteins called connexin in vertebrates. Gap junction channels regulate the passage of ions and biological molecules between adjacent cells and, therefore, are critically important in many biological activities, including development, differentiation, neural activity, and immune response. Mutations in connexin genes are associated with several human diseases, such as neurodegenerative disease, skin disease, deafness, and developmental abnormalities. The activity of gap junction channels is regulated by the membrane voltage, intracellular microenvironment, interaction with other proteins, and phosphorylation. Each connexin channel has its own property for conductance and molecular permeability. A number of studies have tried to reveal the molecular architecture of the channel pore that should confer the connexin-specific permeability/selectivity properties and molecular basis for the gating and regulation. In this review, we give an overview of structural studies and describe the structural and functional relationship of gap junction channels.  相似文献   

18.
Nuclear transport mechanisms   总被引:7,自引:0,他引:7  
The term nuclear transport, refers to the movement of a large variety of macromolecules both into and out of the nucleus. Transport must be extremely selective, yet also very efficient. A single type of channel, the nuclear pore complex, mediates all movement across the nuclear envelope. Selectivity is achieved through the use of families of soluble factors that target substrates for import and export and deliver them to their appropriate intracellular destinations. We now have a fairly detailed understanding of the basic mechanisms of protein import into the nucleus. Many of these same principles can be applied to protein export and perhaps RNA export. This review will summarize the current status of what is known about various transport pathways and highlight the questions that remain to be answered.  相似文献   

19.
All cells must traffic proteins into and across their membranes. In bacteria, several pathways have evolved to enable protein transfer across the inner membrane, the periplasm, and the outer membrane. The major route of protein translocation in and across the cytoplasmic membrane is the general secretion pathway (Sec-pathway). The biogenesis of membrane proteins not only requires protein translocation but also coordinated targeting to the membrane beforehand and folding and assembly into their protein complexes afterwards to function properly in the cell. All these processes are responsible for the biogenesis of membrane proteins that mediate essential functions of the cell such as selective transport, energy conversion, cell division, extracellular signal sensing, and motility. This review will highlight the most recent developments on the structure and function of bacterial membrane proteins, focusing on the journey that integral membrane proteins take to find their final destination in the inner membrane.  相似文献   

20.
Calcium (Ca2+) influx is required for the activation and function of all cells in the immune system. It is mediated mainly by store-operated Ca2+ entry (SOCE) through Ca2+ release-activated Ca2+ (CRAC) channels located in the plasma membrane. CRAC channels are composed of ORAI proteins that form the channel pore and are activated by stromal interaction molecules (STIM) 1 and 2. Located in the membrane of the endoplasmic reticulum, STIM1 and STIM2 have the dual function of sensing the intraluminal Ca2+ concentration in the ER and to activate CRAC channels. A decrease in the ER’s Ca2+ concentration induces STIM multimerization and translocation into puncta close to the plasma membrane where they bind to and activate ORAI channels. Since the identification of ORAI and STIM genes as the principal mediators of CRAC channel function, substantial advances have been achieved in understanding the molecular regulation and physiological role of CRAC channels in cells of the immune system and other organs. In this review, we discuss the mechanisms that regulate CRAC channel function and SOCE, the role of recently identified proteins and mechanisms that modulate the activation of ORAI/STIM proteins and the consequences of CRAC channel dysregulation for lymphocyte function and immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号