首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pancreatic β-cell loss represents a key factor in the pathogenesis of diabetes. Since the influence of purinergic signaling in β-cell apoptosis has not been much investigated, we examined the role of the ADP receptor P2Y13 using the pancreatic insulinoma-cell line MIN6c4 as a model system. Real time-PCR revealed high expression of the ADP receptors P2Y1 and P2Y13. Adding the ADP analogue, 2MeSADP, to MIN6c4 cells induced calcium influx/mobilization and inhibition of cAMP production by activation of P2Y1 and P2Y13, respectively. 2MeSADP reduced cell proliferation and increased Caspase-3 activity; both these effects could be fully reversed by the P2Y13 receptor antagonist MRS2211. We further discovered that blocking the P2Y13 receptor results in enhanced ERK1/2, Akt/PKB and CREB phosphorylation mechanisms involved in β-cell survival. These results indicate that P2Y13 is a proapoptotic receptor in β-cells as the P2Y13 receptor antagonist MRS2211 is able to protect the cells from ADP induced apoptosis.  相似文献   

2.
We investigated the expression of P2X4 and P2X6 receptors on human umbilical vein endothelial cells (HUVECs) and found that both P2X receptor subtypes on plasma membranes are largely restricted to areas of cell-cell contact. Co-labelling experiments at the confocal and electron microscopy levels revealed that P2X4 and P2X6 receptors are strongly co-localised with the cell adhesion molecule VE-cadherin. The P2X4 and P2X6 receptors on plasma membranes at cellular junctions are rapidly (within 5 min) internalised specifically after decreasing extracellular [Ca2+]. Disruption of microfilaments, microtubules and integrin-mediated adhesion or stimulation of P2 receptors with ATP did not alter P2X4 and P2X6 receptor expression on HUVEC plasma membranes. Membraneous P2X4 and P2X6 receptors resisted extraction with Triton-X 100, whereas cytoplasmic P2X receptors were Triton-X 100 soluble. P2X4 receptors, but not P2X6 receptors, could be co-immunoprecipitated with VE-cadherin and vice versa. We conclude that P2X4 and P2X6 receptors are associated with VE-cadherin at HUVEC adherens junctions. Received 15 March 2002; revised 15 March 2002; accepted 19 March 2002  相似文献   

3.
Cell surface receptors for high-density lipoprotein (HDL) on hepatocytes are major partners in the regulation of cholesterol homeostasis. We recently identified a cell surface ATP synthase as a high-affinity receptor for HDL apolipoprotein A-I (apoA-I) on human hepatocytes. Stimulation of this ectopic ATP synthase by apoA-I triggered a low-affinity-receptor-dependent HDL endocytosis by a mechanism strictly related to the generation of ADP. This suggests that nucleotide G-protein- coupled receptors of the P2Y family are molecular components in this pathway. Only P2Y1 and P2Y13 are present on the membrane of hepatocytes. Using both a pharmacological approach and small interference RNA, we identified P2Y13 as the main partner in hepatic HDL endocytosis, in cultured cells as well as in situ in perfused mouse livers. We also found a new important action of the antithrombotic agent AR-C69931MX as a strong activator of P2Y13-mediated HDL endocytosis. Received 9 May 2005; received after revision 24 June 2005; accepted 1 September 2005  相似文献   

4.
During agonist-dependent long-term stimulation of cells, histamine receptor subtypes are frequently down-regulated. However, the mechanisms underlying the modulation of receptor expression during long-term histamine stimulation have yet to be resolved. Based on our recently reported results showing an H1-mediated down-regulation of histamine H2 receptor mRNA in endothelial cells, our aim was to characterize the mechanism controlling rapid and long-term histamine-mediated modulation of H2 receptor expression in more detail. We were able to show that the histamine-induced down-regulation of H2 receptor mRNA and cell surface expression lasting for 24 h was accompanied by augmentation of the receptor protein level in the cytoplasmatic fraction of endothelial cells for this time period. Furthermore, changes in receptor protein levels in whole-cell lysate were negligible, indicating that the rapid and prolonged modulation of cell surface H2 receptor levels by histamine was regulated solely via internalization. The role of nitric oxide (NO) as a key mediator in histamine-stimulated cell responses was underlined by subsequent studies showing the attenuation of histamine-induced H2 receptor mRNA down-regulation and protein trafficking following NO synthase isozyme inhibition.Received 11 March 2003; received after revision 11 June 2003; accepted 17 June 2003  相似文献   

5.
Extracellular nucleotides exert a large number of physiological effects through activation of P2Y receptors. We expressed rat P2Y2 (rP2Y2) receptor, tagged with green fluorescent protein (GFP) in HEK-293 cells and visualized receptor translocation in live cells by confocal microscopy. Functional receptor expression was confirmed by determining [Ca2+]i responses. Agonist stimulation caused a time-dependent translocation of the receptor from the plasma membrane to the cytoplasm. Rearrangement of the actin cytoskeleton was observed during agonist-mediated rP2Y2-GFP receptor internalization. Colocalization of the internalized receptor with early endosomes, clathrin and lysosomes was detected by confocal microscopy. The inhibition of receptor endocytosis by either high-density medium or chlorpromazine in the presence of UTP indicates that the receptor was internalized by the clathrin-mediated pathway. The caveolin- mediated pathway was not involved. Targeting of the receptor from endosomes to lysosomes seems to involve the proteasome pathway, because proteasomal inhibition increased receptor recycling back to the plasma membrane.Received 8 February 2005; received after revision 18 March 2005; accepted 11 April 2005  相似文献   

6.
The endothelium, a monolayer of endothelial cells lining vessel walls, maintains tissue-fluid homeostasis by restricting the passage of the plasma proteins and blood cells into the interstitium. The ion Ca2+, a ubiquitous secondary messenger, initiates signal transduction events in endothelial cells that is critical to control of vascular tone and endothelial permeability. The ion Ca2+ is stored inside the intracellular organelles and released into the cytosol in response to environmental cues. The inositol 1,4,5-trisphosphate (IP3) messenger facilitates Ca2+ release through IP3 receptors which are Ca2+-selective intracellular channels located within the membrane of the endoplasmic reticulum. Binding of IP3 to the IP3Rs initiates assembly of IP3R clusters, a key event responsible for amplification of Ca2+ signals in endothelial cells. This review discusses emerging concepts related to architecture and dynamics of IP3R clusters, and their specific role in propagation of Ca2+ signals in endothelial cells.  相似文献   

7.
The protective effect of high density lipoproteins (HDL) against atherosclerosis is mainly attributed to their capacity to transport excess cholesterol from peripheral tissues back to the liver for further elimination into the bile, a process called reverse cholesterol transport (RCT). Recently, the importance of the P2Y13 receptor (P2Y13-R) was highlighted in HDL metabolism since HDL uptake by the liver was decreased in P2Y13-R deficient mice, which translated into impaired RCT. Here, we investigated for the first time the molecular mechanisms regulating cell surface expression of P2Y13-R. When transiently expressed, P2Y13-R was mainly detected in the endoplasmic reticulum (ER) and strongly subjected to proteasome degradation while its homologous P2Y12 receptor (P2Y12-R) was efficiently targeted to the plasma membrane. We observed an inverse correlation between cell surface expression and ubiquitination level of P2Y13-R in the ER, suggesting a close link between ubiquitination of P2Y13-R and its efficient targeting to the plasma membrane. The C-terminus tail exchange between P2Y13-R and P2Y12-R strongly restored plasma membrane expression of P2Y13-R, suggesting the involvement of the intra-cytoplasmic tail of P2Y13-R in expression defect. Accordingly, proteasomal inhibition increased plasma membrane expression of functionally active P2Y13-R in hepatocytes, and consequently stimulated P2Y13-R-mediated HDL endocytosis. Importantly, proteasomal inhibition strongly potentiated HDL hepatic uptake (>200 %) in wild-type but not in P2Y13-R-deficient mice, thus reinforcing the role of P2Y13-R expression in regulating HDL metabolism. Therefore, specific inhibition of the ubiquitin–proteasome system might be a novel powerful HDL therapy to enhance P2Y13-R expression and consequently promote the overall RCT.  相似文献   

8.
The ability of cells to migrate to the destined tissues or lesions is crucial for physiological processes from tissue morphogenesis, homeostasis and immune responses, and also for stem cell-based regenerative medicines. Cytosolic Ca2+ is a primary second messenger in the control and regulation of a wide range of cell functions including cell migration. Extracellular ATP, together with the cognate receptors on the cell surface, ligand-gated ion channel P2X receptors and a subset of G-protein-coupled P2Y receptors, represents common autocrine and/or paracrine Ca2+ signalling mechanisms. The P2X receptor ion channels mediate extracellular Ca2+ influx, whereas stimulation of the P2Y receptors triggers intracellular Ca2+ release from the endoplasmic reticulum (ER), and activation of both type of receptors thus can elevate the cytosolic Ca2+ concentration ([Ca2+]c), albeit with different kinetics and capacity. Reduction in the ER Ca2+ level following the P2Y receptor activation can further induce store-operated Ca2+ entry as a distinct Ca2+ influx pathway that contributes in ATP-induced increase in the [Ca2+]c. Mesenchymal stem cells (MSC) are a group of multipotent stem cells that grow from adult tissues and hold promising applications in tissue engineering and cell-based therapies treating a great and diverse number of diseases. There is increasing evidence to show constitutive or evoked ATP release from stem cells themselves or mature cells in the close vicinity. In this review, we discuss the mechanisms for ATP release and clearance, the receptors and ion channels participating in ATP-induced Ca2+ signalling and the roles of such signalling mechanisms in mediating ATP-induced regulation of MSC migration.  相似文献   

9.
Accumulating findings indicate that nucleotides play an important role in microglia through P2 purinoceptors. P2 purinoceptors are divided into two families, ionotropic receptors (P2X) and metabotropic receptors (P2Y). P2X receptors (7 types; P2X1 – P2X7) contain intrinsic pores that open by binding with ATP. P2Y receptors (8 types; P2Y1, 2, 4, 6, 11, 12, 13 and 14) are activated by nucleotides and couple to intracellular second-messenger systems through heteromeric G-proteins. Nucleotides are released or leaked from non-excitable cells as well as neurons in physiological and pathophysiological conditions. Microglia express many types of P2 purinoceptors and are known as resident macrophages in the CNS. ATP and other nucleotides work as ‘warning molecules’ especially through activating microglia in pathophysiological conditions. Microglia play a key role in neuropathic pain, chemotaxis and phagocytosis through nucleotide-evoked activation of P2X4, P2Y12 and P2Y6 receptors, respectively. These findings indicate that extracellular nucleotides are important players in the central stage of microglial function. Received 19 April 2008; received after revision 20 May 2008; accepted 23 May 2008  相似文献   

10.
Phagocytosis mediated by the complement receptor CR3 (also known as integrin αMß2 or Mac-1) is regulated by the recruitment of talin to the cytoplasmic tail of the ß2 integrin subunit. Talin recruitment to this integrin is dependent on Rap1 activation. However, the mechanism by which Rap1 regulates this event and CR3-dependent phagocytosis remains largely unknown. In the present work, we examined the role of the Rap1 effector RIAM, a talin-binding protein, in the regulation of complement-mediated phagocytosis. Using the human myeloid cell lines HL-60 and THP-1, we determined that knockdown of RIAM impaired αMß2 integrin affinity changes induced by stimuli fMLP and LPS. Phagocytosis of complement-opsonized RBC particles, but not of IgG-opsonized RBC particles, was impaired in RIAM knockdown cells. Rap1 activation via EPAC induced by 8-pCPT-2′-O-Me-cAMP resulted in an increase of complement-mediated phagocytosis that was abrogated by knockdown of RIAM in HL-60 and THP-1 cell lines and in macrophages derived from primary monocytes. Furthermore, recruitment of talin to ß2 integrin during complement-mediated phagocytosis was reduced in RIAM knockdown cells. These results indicate that RIAM is a critical component of the phagocytosis machinery downstream of Rap1 and mediates its function by recruiting talin to the phagocytic complement receptors.  相似文献   

11.
The development of functional blood and lymphatic vessels requires spatio-temporal coordination of the production and release of growth factors such as vascular endothelial growth factors (VEGFs). VEGF family proteins are produced in multiple isoforms with distinct biological properties and bind to three types of VEGF receptors. A VEGF-A splice variant, VEGF-A165b, has recently been isolated from kidney epithelial cells. This variant is identical to VEGF-A165 except for the last six amino acids encoded by an alternative exon. VEGF-A165b and VEGF-A165 bind VEGF receptors 1 and 2 with similar affinity. VEGF-A165b elicits drastically reduced activity in angiogenesis assays and even counteracts signaling by VEGF-A165. VEGF-A165b weakly binds to heparan sulfate and does not interact with neuropilin-1, a coreceptor for VEGF receptor 2. To determine the molecular basis for altered signaling by VEGF-A165b we measured VEGF receptor 2 and ERK kinase activity in endothelial cells in culture. VEGF-A165 induced strong and sustained activation of VEGF receptor 2 and ERK-1 and −2, while activation by VEGF-A165b was only weak and transient. Taken together these data show that VEGF-A165b has attenuated signaling potential through VEGF receptor 2 defining this new member of the VEGF family as a partial receptor agonist. Received 31 May 2006; received after revision 26 June 2006; accepted 14 July 2006  相似文献   

12.
Endothelium-derived nitric oxide and vascular physiology and pathology   总被引:13,自引:0,他引:13  
In 1980, Furchgott and Zawadzki demonstrated that the relaxation of vascular smooth muscle cells in response to acetylcholine is dependent on the anatomical integrity of the endothelium. Endothelium-derived relaxing factor was identified 7 years later as the free radical gas nitric oxide (NO). In endothelium, the amino acid L-arginine is converted to L-citrulline and NO by one of the three NO synthases, the endothelial isoform (eNOS). Shear stress and cell proliferation appear to be, quantitatively, the two major regulatory factors of eNOS gene expression. However, eNOS seems to be mainly regulated by modulation of its activity. Stimulation of specific receptors to various agonists (e.g., bradykinin, serotonin, adenosine, ADP/ATP, histamine, thrombin) increases eNOS enzymatic activity at least in part through an increase in intracellular free Ca2+. However, the mechanical stimulus shear stress appears again to be the major stimulus of eNOS activity, although the precise mechanisms activating the enzyme remain to be elucidated. Phosphorylation and subcellular translocation (from plasmalemmal caveolae to the cytoskeleton or cytosol) are probably involved in these regulations. Although eNOS plays a major vasodilatory role in the control of vasomotion, it has not so far been demonstrated that a defect in endothelial NO production could be responsible for high blood pressure in humans. In contrast, a defect in endothelium-dependent vasodilation is known to be promoted by several risk factors (e.g., smoking, diabetes, hypercholesterolemia) and is also the consequence of atheroma (fatty streak infiltration of the neointima). Several mechanisms probably contribute to this decrease in NO bioavailability. Finally, a defect in NO generation contributes to the pathophysiology of pulmonary hypertension. Elucidation of the mechanisms of eNOS enzyme activity and NO bioavailability will contribute to our understanding the physiology of vasomotion and the pathophysiology of endothelial dysfunction, and could provide insights for new therapies, particularly in hypertension and atherosclerosis.  相似文献   

13.
Seven transmembrane G protein-coupled receptors (GPCRs) have gained much interest in recent years as it is the largest class among cell surface receptors. G proteins lie in the heart of GPCRs signalling and therefore can be therapeutically targeted to overcome complexities in GPCR responses and signalling. G proteins are classified into four families (Gi, Gs, G12/13 and Gq); Gq is further subdivided into four classes. Among them Gαq and Gαq/11 isoforms are most crucial and ubiquitously expressed; these isoforms are almost 88% similar at their amino acid sequence but may exhibit functional divergences. However, uncertainties often arise about Gαq and Gαq/11 inhibitors, these G proteins might also have suitability to the invention of novel-specific inhibitors for each isoforms. YM-254890 and UBO-QIC are discovered as potent inhibitors of Gαq functions and also investigated in thrombin protease-activated receptor (PAR)-1 inhibitors and platelet aggregation inhibition. The most likely G protein involved in PAR-1 stimulates responses is one of the Gαq family isoforms. In this review, we highlight the molecular structures and pharmacological responses of Gαq family which may reflect the biochemical and molecular role of Gαq and Gαq/11. The advanced understanding of Gαq and Gαq/11 role in GPCR signalling may shed light on our understanding on cell biology, cellular physiology and pathophysiology and also lead to the development of novel therapeutic agents for a number of diseases.  相似文献   

14.
P2X4 and P2X7 receptors are ATP-gated ion channels that are co-expressed in alveolar epithelial type I cells. Both receptors are localized to the plasma membrane and partly associated with lipid rafts. Here we report on our study in an alveolar epithelial cell line of the molecular organization of P2X7R and P2X4R receptors and the effect of their knockdown. Native gel electrophoresis reveals three P2X7R complexes of ~430, ~580 and ~760 kDa. The latter two correspond exactly in size to signals of Cav-1, the structural protein of caveolae. Interestingly knockdown of P2rx7 affects protein levels, the intracellular distribution and the supramolecular organization of Cav-1 as well as of P2X4R, which is mainly detected in a complex of ~430 kDa. Our data suggest upregulation of P2X4R as a compensatory mechanism of P2X7R depletion.  相似文献   

15.
Insulin signaling regulates lifespan, reproduction, metabolic homeostasis, and resistance to stress in the adult organism. In Drosophila, there are seven insulin-like peptides (DILP1–7). Three of these (DILP2, 3 and 5) are produced in median neurosecretory cells of the brain, designated IPCs. Previous work has suggested that production or release of DILPs in IPCs can be regulated by a factor secreted from the fat body as well as by neuronal GABA or short neuropeptide F. There is also evidence that serotonergic neurons may regulate IPCs. Here, we investigated mechanisms by which serotonin may regulate the IPCs. We show that the IPCs in adult flies express the 5-HT1A, but not the 5-HT1B or 5-HT7 receptors, and that processes of serotonergic neurons impinge on the IPC branches. Knockdown of 5-HT1A in IPCs by targeted RNA interference (RNAi) leads to increased sensitivity to heat, prolonged recovery after cold knockdown and decreased resistance to starvation. Lipid metabolism is also affected, but no effect on growth was seen. Furthermore, we show that DILP2-immunolevels in IPCs increase after 5-HT1A knockdown; this is accentuated by starvation. Heterozygous 5-HT1A mutant flies display the same phenotype in all assays, as seen after targeted 5-HT1A RNAi, and flies fed the 5-HT1A antagonist WAY100635 display reduced lifespan at starvation. Our findings suggest that serotonin acts on brain IPCs via the 5-HT1A receptor, thereby affecting their activity and probably insulin signaling. Thus, we have identified a second inhibitory pathway regulating IPC activity in the Drosophila brain.  相似文献   

16.
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissues.  相似文献   

17.
目的探讨连续性血液净化治疗对重症急性胰腺炎(severeacutepancreatitis,SAP)患者内皮细胞的作用.方法人脐静脉内皮细胞(HumanUmbilicalVeinEndothelialCells,HUVEC)按实验分组分别用16例健康对照组血清,38例 SAP患者连续性血液净化(ContinuousBloodPurificantion,CBP)治疗前、治疗6h、治疗20h血清体外干预脐静脉内皮细胞5h.transwell小室观察内皮细胞通透性变化,激光共聚焦显微镜观察 F actin应力微丝的表达及分布.结果 SAP患者 CBP治疗前内皮细胞通透性较健康对照组明显增高(P<0.01),CBP治疗6h、治疗20h后通透性均降低(P<0.05),但治疗20h组与治疗6h组相比,差异无显著性(P>0.05).激光共聚焦结果显示,与健康对照组相比,CBP治疗前 SAP患者内皮细胞 F actin应力微丝的数量及密度均明显增加,CBP治疗6h后,F actin应力微丝形成减少,治疗20h后减少更加显著.结论重症急性胰腺炎患者内皮细胞通透性明显增加,CBP治疗可以显著降低 SAP患者内皮细胞通透性,其机制可能与调节 F actin应力微丝形成与分布有关  相似文献   

18.
We previously demonstrated the antiproliferative and antiangiogenic effects of 3-methylcholanthrene (3MC), an aryl-hydrocarbon receptor (AhR) agonist, in human umbilical vascular endothelial cells (HUVECs). Herein, we unraveled its molecular mechanisms in inhibiting HUVEC motility. 3MC down-regulated FAK, but up-regulated RhoA, which was rescued by AhR knockdown. It led us to identify novel AhR binding sites in the FAK/RhoA promoters. Additionally, 3MC increased RhoA activity via suppression of a negative feedback pathway of FAK/p190RhoGAP. With an increase in membrane-bound RhoA, subsequent stress fiber and focal adhesion complex formation was observed in 3MC-treated cells, and this was reversed by a RhoA inhibitor and AhR antagonists. Notably, these compounds significantly reversed 3MC-mediated anti-migration in a transwell assay. The in vitro findings were further confirmed using an animal model of Matrigel formation in Balb/c mice. Collectively, AhR’s genomic regulation of FAK/RhoA, together with RhoA activation, is ascribable to the anti-migration effect of 3MC in HUVECs.  相似文献   

19.
Apoptotic cell (AC)-derived factors alter the physiology of macrophages (MΦs) towards a regulatory phenotype, characterized by reduced nitric oxide (NO) production. Impaired NO formation in response to AC-conditioned medium (CM) was facilitated by arginase II (ARG II) expression, which competes with inducible NO synthase for l-arginine. Here we explored signaling pathways allowing CM to upregulate ARG II in RAW264.7 MΦs. Sphingosine-1-phosphate (S1P) was required and acted synergistically with a so far unidentified factor to elicit high ARG II expression. S1P activated S1P2, since S1P2 knockdown prevented ARG II upregulation. Furthermore, ERK5 knockdown attenuated CM-mediated ARG II protein induction. CREB was implicated as shown by EMSA analysis and decoy-oligonucleotides scavenging CREB in RAW264.7 MΦs, which blocked ARG II expression. We conclude that AC-derived S1P binds to S1P2 and acts synergistically with other factors to activate ERK5 and concomitantly CREB. This signaling cascade shapes an anti-inflammatory MΦ phenotype by ARG II induction.  相似文献   

20.
The mechanism by which the novel, pure glucose-dependent insulinotropic, imidazoline derivative BL11282 promotes insulin secretion in pancreatic islets has been investigated. The roles of KATP channels, α2-adrenoreceptors, the I1-receptor-phosphatidylcholine-specific phospholipase (PC-PLC) pathway and arachidonic acid signaling in BL11282 potentiation of insulin secretion in pancreatic islets were studied. Using SUR1(-/-) deficient mice, the previous notion that the insulinotropic activity of BL11282 is not related to its interaction with KATP channels was confirmed. Insulinotropic activity of BL11282 was not related to its effect on α2-adrenoreceptors, I1-imidazoline receptors or PC-PLC. BL11282 significantly increased [3H]arachidonic acid production. This effect was abolished in the presence of the iPLA2 inhibitor, bromoenol lactone. The data suggest that potentiation of glucose-induced insulin release by BL11282, which is independent of concomitant changes in cytoplasmic free Ca2+ concentration, involves release of arachidonic acid by iPLA2 and its metabolism to epoxyeicosatrienoic acids through the cytochrome P-450 pathway. Received 5 July 2007; received after revision 18 September 2007; accepted 20 September 2007  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号