首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Regulation of cyclin-Cdk activity in mammalian cells   总被引:33,自引:0,他引:33  
Cell cycle progression is driven by the coordinated regulation of the activities of cyclin-dependent kinases (Cdks). Of the several mechanisms known to regulate Cdk activity in response to external signals, regulation of cyclin gene expression, post-translational modification of Cdks by phosphorylation-dephosphorylation cascades, and the interaction of cyclin/Cdk complexes with protein inhibitors have been thoroughly studied. During recent years, much attention has also been given to mechanisms that regulate protein degradation by the ubiquitin/proteasome pathway, as well as to the regulation of subcellular localization of the proteins that comprise the intrinsic cell cycle clock. The purpose of the present review is to summarize the most important aspects of the various mechanisms implicated in cell cycle regulation.  相似文献   

4.
5.
6.
The regulation of microtubule dynamics is critical to ensure essential cell functions, such as proper segregation of chromosomes during mitosis or cell polarity and migration. End-binding protein 1 (EB1) is a plus-end-tracking protein (+TIP) that accumulates at growing microtubule ends and plays a pivotal role in the regulation of microtubule dynamics. EB1 autonomously binds an extended tubulin-GTP/GDP-Pi structure at growing microtubule ends and acts as a molecular scaffold that recruits a large number of regulatory +TIPs through interaction with CAP-Gly or SxIP motifs. While extensive studies have focused on the structure of EB1-interacting site at microtubule ends and its role as a molecular platform, the mechanisms involved in the negative regulation of EB1 have only started to emerge and remain poorly understood. In this review, we summarize recent studies showing that EB1 association with MT ends is regulated by post-translational modifications and affected by microtubule-targeting agents. We also present recent findings that structural MAPs, that have no tip-tracking activity, physically interact with EB1 to prevent its accumulation at microtubule plus ends. These observations point out a novel concept of “endogenous EB1 antagonists” and emphasize the importance of finely regulating EB1 function at growing microtubule ends.  相似文献   

7.
Although all nucleated cells within a multicellular organism contain a complete copy of the genome, cell identity relies on the expression of a specific subset of genes. Therefore, when cells divide they must not only copy their genome to their daughters, but also ensure that the pattern of gene expression present before division is restored. While the carrier of this epigenetic memory has been a topic of much research and debate, post-translational modifications of histone proteins have emerged in the vanguard of candidates. In this paper we examine the mechanisms by which histone post-translational modifications are propagated through DNA replication and cell division, and we critically examine the evidence that they can also act as vectors of epigenetic memory. Finally, we consider ways in which epigenetic memory might be disrupted by interfering with the mechanisms of DNA replication.  相似文献   

8.
9.
10.
Confluent cultured cells activate a lysosomal pathway of polypeptide breakdown in response to withdrawal of serum growth factors. The substrates for this proteolytic pathway are a restricted class of cytosolic polypeptides containing peptide sequences biochemically related to lysine-phenylalanine-glutamate-arginine-glutamine, or, in single amino acid abbreviations, KFERQ. The heat shock cognate protein of 73 kD (hsc73) binds to a variety of polypeptides via this molecular determinant and facilitates their lysosomal import and degradation. In addition, a portion of intracellular hsc73 resides within the lysosome and appears to be an essential component of the proteolytic machinery. Several potential mechanisms by which hsc73 mediates selective lysosomal import and degradation of polypeptides are discussed.  相似文献   

11.
12.
13.
14.
The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.  相似文献   

15.
In cardiac muscle, the sarcolemmal sodium/potassium ATPase is the principal quantitative means of active transport at the myocyte cell surface, and its activity is essential for maintaining the trans-sarcolemmal sodium gradient that drives ion exchange and transport processes that are critical for cardiac function. The 72-residue phosphoprotein phospholemman regulates the sodium pump in the heart: unphosphorylated phospholemman inhibits the pump, and phospholemman phosphorylation increases pump activity. Phospholemman is subject to a remarkable plethora of post-translational modifications for such a small protein: the combination of three phosphorylation sites, two palmitoylation sites, and one glutathionylation site means that phospholemman integrates multiple signaling events to control the cardiac sodium pump. Since misregulation of cytosolic sodium contributes to contractile and metabolic dysfunction during cardiac failure, a complete understanding of the mechanisms that control the cardiac sodium pump is vital. This review explores our current understanding of these mechanisms.  相似文献   

16.
To be, or not to be — molecular chaperones in protein degradation   总被引:2,自引:0,他引:2  
To be, or not to be--that is the question not only for Hamlet in Shakespeare's drama but also for a protein associated with molecular chaperones. While long viewed exclusively as cellular folding factors, molecular chaperones recently emerged as active participants in protein degradation. This places chaperones at the center of a life or death decision during protein triage. Here we highlight molecular mechanisms that underlie chaperone action at the folding/degradation interface in mammalian cells. We discuss the importance of chaperone-assisted degradation for the regulation of cellular processes and its emerging role as a target for therapeutic intervention in cancer and amyloid diseases.  相似文献   

17.
The ubiquitin–proteasome pathway of protein degradation is one of the major mechanisms that are involved in the maintenance of the proper levels of cellular proteins. The regulation of proteasomal degradation thus ensures proper cell functions. The family of proteins containing ubiquitin-like (UbL) and ubiquitin-associated (UBA) domains has been implicated in proteasomal degradation. UbL–UBA domain containing proteins associate with substrates destined for degradation as well as with subunits of the proteasome, thus regulating the proper turnover of proteins.  相似文献   

18.
The spontaneously hypertensive rat (SHR) is an important animal model of human essential hypertension. During the first month of life, increased retention of sodium is present in the SHR which appears to be mediated by the renin-angiotensin system. The present review will discuss the role that increased activity of the renin-angiotensin system plays in sodium/body fluid regulation during early development. It is hypothesized that disordered regulation of sodium/body fluid homeostasis during this stage leads to pathological cardiovascular regulation in adulthood. Through an understanding of the relationship between sodium/body fluid balance in the young and cardiovascular function in the adult insights may be gained into both the pathological state of hypertension and the critical role played by early development in shaping homeostatic mechanisms in adulthood.  相似文献   

19.
R F Kirby  A K Johnson 《Experientia》1992,48(4):345-351
The spontaneously hypertensive rat (SHR) is an important animal model of human essential hypertension. During the first month of life, increased retention of sodium is present in the SHR which appears to be mediated by the renin-angiotensin system. The present review will discuss the role that increased activity of the renin-angiotensin system plays in sodium/body fluid regulation during early development. It is hypothesized that disordered regulation of sodium/body fluid homeostasis during this stage leads to pathological cardiovascular regulation in adulthood. Through an understanding of the relationship between sodium/body fluid balance in the young and cardiovascular function in the adult insights may be gained into both the pathological state of hypertension and the critical role played by early development in shaping homeostatic mechanisms in adulthood.  相似文献   

20.
In chemical synapses, action potentials evoke synaptic vesicle fusion with the presynaptic membrane at the active zone to release neurotransmitter. Synaptic vesicle endocytosis (SVE) then follows exocytosis to recapture vesicle proteins and lipid components for recycling and the maintenance of membrane homeostasis. Therefore, SVE plays an essential role during neurotransmission and is one of the most precisely regulated biological processes. Four modes of SVE have been characterized and both positive and negative regulators have been identified. However, our understanding of SVE regulation remains unclear, especially the identity of negative regulators and their mechanisms of action. Here, we review the current knowledge of proteins that function as inhibitors of SVE and their modes of action in different forms of endocytosis. We also propose possible physiological roles of such negative regulation. We believe that a better understanding of SVE regulation, especially the inhibitory mechanisms, will shed light on neurotransmission in health and disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号