首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vascular smooth muscle cells, IGF-I stimulates SHPS-1/SHP2/Src complex formation which is required for IGF-I-stimulated cell proliferation. Using SHP2/Src silencing and a Pyk2/Y402F mutant, we showed that Pyk2 was also recruited to the SHPS-1 complex. Pyk2 recruitment to SHPS-1 is mediated via the interaction of Pyk2 Tyr402 and the Src in response to IGF-I. Following Src/Pyk2 association, Src phosphorylates Pyk2 on Tyr881 providing a binding site for Grb2. Cells expressing Pyk2/Y881F showed decreased Grb2 recruitment to SHPS-1 and impaired Shc/Grb2 association. This change led to reduced Erk1/2 (MAP kinase) activation and cell proliferation in response to IGF-I. Our results show that, following its recruitment to the SHPS-1 signaling complex, Pyk2 localizes Grb2 in close proximity to Shc thereby facilitating Shc/Grb2 association which leads to Erk1/2 activation in response to IGF-I. Thus, Pyk2 recruitment to SHPS-1 plays an important role in regulating the IGF-I-stimulated mitogenic response.  相似文献   

2.
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.  相似文献   

3.
ALCAM/CD166 is a member of the immunoglobulin superfamily of cell adhesion molecules (Ig-CAMs) which mediates intercellular adhesion through either homophilic (ALCAM–ALCAM) or heterophilic (ALCAM–CD6) interactions. ALCAM-mediated adhesion is crucial in different physiological and pathological phenomena, with particular relevance in leukocyte extravasation, stabilization of the immunological synapse, T cell activation and proliferation and tumor growth and metastasis. Although the functional implications of ALCAM in these processes is well established, the mechanisms regulating its adhesive capacity remain obscure. Using confocal microscopy colocalization, and biochemical and functional analyses, we found that ALCAM directly associates with the tetraspanin CD9 on the leukocyte surface in protein complexes that also include the metalloproteinase ADAM17/TACE. The functional relevance of these interactions is evidenced by the CD9-induced upregulation of both homophilic and heterophilic ALCAM interactions, as reflected by increased ALCAM-mediated cell adhesion and T cell migration, activation and proliferation. The enhancement of ALCAM function induced by CD9 is mediated by a dual mechanism involving (1) augmented clustering of ALCAM molecules, and (2) upregulation of ALCAM surface expression due to inhibition of ADAM17 sheddase activity.  相似文献   

4.
Cell adhesion molecules (CAMs) have been implicated in the control of a wide variety of cellular processes, such as cell adhesion, polarization, survival, movement, and proliferation. Nectins have emerged as immunoglobulin-like CAMs that participate in calcium-independent cell-cell adhesion by homophilic and heterophilic trans-interactions with nectins and nectin-like molecules. Nectin-based cell-cell adhesion exerts its function independently or in cooperation with other CAMs including cadherins and is essential for the formation of intercellular junctions, including adherens junctions, tight junctions, and puncta adherentia junctions. Nectins cis-interact with integrin αvβ3 and platelet-derived growth factor receptor and facilitate their signals to regulate the formation and integrity of intercellular junctions and cell survival. Nectins intracellularly associate with peripheral membrane proteins, including afadin and Par-3. This review focuses on recent progress in understanding the interactions of nectins with other transmembrane and peripheral membrane proteins to exert pleiotropic functions. Received 27 June 2007; received after revision 14 August 2007; accepted 12 September 2007  相似文献   

5.
Insulin-like growth factors (IGFs) influence placental cell (cytotrophoblast) kinetics. We recently reported that the protein tyrosine phosphatase (PTP) SHP-2 positively regulates IGF actions in the placenta. In other systems, the closely related PTP, SHP-1, functions as a negative regulator of signaling events but its role in the placenta is still unknown. We examined the hypothesis that SHP-1 negatively regulates IGF actions in the human placenta. Immunohistochemical (IHC) analysis demonstrated that SHP-1 is abundant in cytotrophoblast. SHP-1 expression was decreased in first-trimester placental explants using siRNA; knockdown did not alter IGF-induced proliferation but it significantly enhanced proliferation in serum-free conditions, revealing that placental growth is endogenously regulated. Candidate regulators were determined by using antibody arrays, Western blotting, and IHC to examine the activation status of multiple receptor tyrosine kinases (RTKs) in SHP-1-depleted explants; amongst the alterations observed was enhanced activation of EGFR, suggesting that SHP-1 may interact with EGFR to inhibit proliferation. The EGFR tyrosine kinase inhibitor PD153035 reversed the elevated proliferation seen in the absence of SHP-1. This study demonstrates a role for SHP-1 in human trophoblast turnover and establishes SHP-1 as a negative regulator of EGFR activation. Targeting placental SHP-1 expression may provide therapeutic benefits in common pregnancy conditions with abnormal trophoblast proliferation.  相似文献   

6.
The non-receptor tyrosine kinase Src is a critical regulator of cytoskeletal contraction, cell adhesion, and migration. In normal cells, Src activity is stringently controlled by Csk-dependent phosphorylation of Src(Y530), and by Cullin-5-dependent ubiquitinylation, which affects active Src(pY419) exclusively, leading to its degradation by the proteosome. Previous work has shown that Src activity is also limited by Cdk5, a proline-directed kinase, which has been shown to phosphorylate Src(S75). Here we show that this phosphorylation promotes the ubiquitin-dependent degradation of Src, thus restricting the availability of active Src. We demonstrate that Src(S75) phosphorylation occurs in vivo in epithelial cells, and like ubiquitinylation, is associated only with active Src. Preventing Cdk5-dependent phosphorylation of Src(S75), by site-specific mutation of S75 or by Cdk5 inhibition or suppression, increases Src(Y419) phosphorylation and kinase activity, resulting in Src-dependent cytoskeletal changes. In transfected cells, ubiquitinylation of Src(S75A) is about 35% that of wild-type Src-V5, and its half-life is approximately 2.5-fold greater. Cdk5 suppression leads to a comparable decrease in the ubiquitinylation of endogenous Src and a similar increase in Src stability. Together, these findings demonstrate that Cdk5-dependent phosphorylation of Src(S75) is a physiologically significant mechanism of regulating intracellular Src activity.  相似文献   

7.
Oncogenic protein tyrosine kinases   总被引:8,自引:0,他引:8  
HER2 (human epidermal growth factor receptor-2; also known as erbB2) and its relatives HER1 (epidermal growth factor receptor; EGFR), HER3 and HER4 belong to the HER family of receptor tyrosine kinases. In normal cells, activation of this receptor tyrosine kinase family triggers a rich network of signaling pathways that control normal cell growth, differentiation, motility and adhesion in several cell lineages. The first tumor studied for an alteration of the HER2 oncogene is breast carcinoma, and so far the majority of studies have been performed on this oncotype. Although involvement of HER2 as a cause of human cell transformation needs to be further investigated, overexpression of the HER2 oncogene in human breast carcinomas has been associated with a more aggressive course of disease. It has been suggested that this association depends on HER2-driven proliferation, vessel formation and/or invasiveness; however, poor prognosis may not be directly related to the presence of the oncoprotein on the cell membrane but instead to the breast carcinoma subset identified by HER2 overexpression and characterized by a peculiar gene expression profile, as recently identified. HER2-positive tumors were recently shown to benefit from anthracyclin treatment and to be resistant to endocrine therapy. Despite the fact that many pathways interacting with HER2 are still not fully understood, this tyrosine kinase receptor is, to date, a promising molecule for targeted therapy.  相似文献   

8.
Cell migration requires the coordinated turnover of focal adhesions, a process that involves FAK phosphorylation. Since Src is the major kinase implicated in FAK phosphorylation, we focus here on the role of Src activation on adhesion remodelling. In astrocytoma cells, constitutively activated Src induces both FAK phosphorylation and adhesion rearrangement. To evaluate how Src controls these processes, we used a recently described Src reporter to monitor the dynamics of Src phosphorylation. Upon Src activation, focal adhesions started to disassemble while Src appeared highly expressed at newly formed membrane ruffles. Kinetic analysis of time-lapse movies showed that loss of phospho-Src at focal adhesions was time-correlated with the appearance of membrane ruffles containing phospho-Src. Moreover, FLIP analysis revealed a dynamic equilibrium of Src between focal adhesions and membrane ruffles. We conclude that upon phosphorylation, Src is directly translocated from focal adhesions to membrane ruffles, thereby promoting formation of new adhesion complexes. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Received 21 July 2008; received after revision 10 October 2008; accepted 03 November 2008  相似文献   

9.
Thrombospondins: from structure to therapeutics   总被引:2,自引:0,他引:2  
Thrombospondin-1 is a secreted protein that modulates vascular cell behavior via several cell surface receptors. In vitro, nanomolar concentrations of thrombospondin-1 are required to alter endothelial and vascular smooth muscle cell adhesion, proliferation, motility, and survival. Yet, much lower levels of thrombospondin-1 are clearly functional in vivo. This discrepancy was explained with the discovery that the potency of thrombospondin-1 increases more than 100-fold in the presence of physiological levels of nitric oxide (NO). Thrombospondin-1 binding to CD47 inhibits NO signaling by preventing cGMP synthesis and activation of its target cGMP-dependent protein kinase. This potent antagonism of NO signaling allows thrombospondin-1 to acutely constrict blood vessels, accelerate platelet aggregation, and if sustained, inhibit angiogenic responses. Acute antagonism of NO signaling by thrombospondin-1 is important for hemostasis but becomes detrimental for tissue survival of ischemic injuries. New therapeutic approaches targeting thrombospondin-1 or CD47 can improve recovery from ischemic injuries and overcome a deficit in NO-responsiveness in aging. (Part of a Multi-author Review).  相似文献   

10.
Leukocyte trafficking from the bloodstream to inflamed tissues across the endothelial barrier is an essential response in innate immunity. Leukocyte adhesion, locomotion, and diapedesis induce signaling in endothelial cells and this is accompanied by a profound reorganization of the endothelial cell surfaces that is only starting to be unveiled. Here we review the current knowledge on the leukocyte-mediated alterations of endothelial membrane dynamics and their role in promoting leukocyte extravasation. The formation of protein- and lipid-mediated cell adhesion nanodomains at the endothelial apical surface, the extension of micrometric apical membrane docking structures, which are derived from microvilli and embrace adhered leukocytes, as well as the vesicle-trafficking pathways that are required for efficient leukocyte diapedesis, are discussed. The coordination between these different endothelial membrane-remodeling events probably provides the road map for transmigrating leukocytes to find exit points in the vessel wall, in a context of severe mechanical and inflammatory stress. A better understanding of how vascular endothelial cells respond to immune cell adhesion should enable new therapeutic strategies to be developed that can abrogate uncontrolled leukocyte extravasation in inflammatory diseases.  相似文献   

11.
12.
Identifying the small molecules that permit precise regulation of embryonic stem (ES) cell proliferation should further support our understanding of the underlying molecular mechanisms of self renewal. In the present study, we showed that PGE2 increased [3H]-thymidine incorporation in a time and dose dependent manner. In addition, PGE2 increased the expression of cell cycle regulatory proteins, the percentage of cells in S phase and the total number of cells. PGE2 obviously increased E-type prostaglandin (EP) receptor 1 mRNA expression level compare to 2, 3, 4 subtypes. EP1 antagonist also blocked PGE2-induced cell cycle regulatory protein expression and thymidine incorporation. PGE2 caused phosphorylation of protine kinase C, Src, epidermal growth factor (EGF) receptor, phosphatidylinositol 3-kinase (PI3K)/Akt phosphorylation, and p44/42 mitogen-activated protein kinase (MAPK), which were blocked by each inhibitors. In conclusion, PGE2-stimulated proliferation is mediated by MAPK via EP1 receptor-dependent PKC and EGF receptor-dependent PI3K/Akt signaling pathways in mouse ES cells. Received 30 January 2009; received after revision 03 March 2009; accepted 10 March 2009  相似文献   

13.
CD24 is a glycosyl-phosphatidylinositol-anchored membrane protein that is frequently over-expressed in a variety of human carcinomas and is correlated with poor prognosis. In cancer cell lines, changes of CD24 expression can alter several cellular properties in vitro and tumor growth in vivo. However, little is known about how CD24 mediates these effects. Here we have analyzed the functional consequences of CD24 knock-down or over-expression in human cancer cell lines. Depletion of CD24 reduced cell proliferation and adhesion, enhanced apoptosis, and regulated the expression of various genes some of which were identified as STAT3 target genes. Loss of CD24 reduced STAT3 and FAK phosphorylation. Diminished STAT3 activity was confirmed by specific reporter assays. We found that reduced STAT3 activity after CD24 knock-down was accompanied by altered Src phosphorylation. Silencing of Src, similar to CD24, targeted the expression of prototype STAT3-regulated genes. Likewise, the over-expression of CD24 augmented Src-Y416 phosphorylation, the recruitment of Src into lipid rafts and the expression of STAT3-dependent target genes. An antibody to CD24 was effective in reducing tumor growth of A549 lung cancer and BxPC3 pancreatic cancer xenografts in mice. Antibody treatment affected the level of Src-phosphorylation in the tumor and altered the expression of STAT3 target genes. Our results provide evidence that CD24 regulates STAT3 and FAK activity and suggest an important role of Src in this process. Finally, the targeting of CD24 by antibodies could represent a novel route for tumor therapy.  相似文献   

14.
Expression of the glycosylphosphatidylinositol-anchored membrane protein CD24 correlates with a poor prognosis for many human cancers, and in experimental tumors can promote metastasis. However, the mechanism by which CD24 contributes to tumor progression remains unclear. Here we report that in MTLy breast cancer cells CD24 interacts with and augments the kinase activity of c-src, a protein strongly implicated in promoting invasion and metastasis. This occurs within and is dependent upon intact lipid rafts. CD24-augmented c-src kinase activity increased formation of focal adhesion complexes, accelerated phosphorylation of FAK and paxillin and consequently enhanced integrin-mediated adhesion. Loss and gain of function approaches showed that c-src activity is necessary and sufficient to mediate the effects of CD24 on integrin-dependent adhesion and cell spreading, as well as on invasion. Together these results indicate that c-src is a CD24-activated mediator that promotes integrin-mediated adhesion and invasion, and suggest a mechanism by which CD24 might contribute to tumor progression through stimulating the activity of c-src or another member of the Src family.  相似文献   

15.
目的 研究表皮生长因子受体(epidermal growth factor receptor,EGFR)在不同转移潜能乳腺癌细胞中的表达,并探讨其在乳腺癌侵袭转移过程中的作用. 方法 利用人工基质膜侵袭实验获得高、低转移潜能乳腺癌细胞亚系,四甲基偶氮唑盐(MTT)法检测两系细胞生长曲线和倍增时间,流式细胞仪检测两系细胞周期,transwell侵袭小室模型比较两系的迁移能力.应用逆转录聚合酶链反应(RT-PCR)和免疫印迹(Western Blot)检测EGFR在两系细胞中的表达. 结果 利用transwell小室成功筛选出高、低转移潜能乳腺癌细胞亚系;它们的体外生长速度、倍增时间、细胞周期和侵袭力具有明显差异;RT-PCR和Western Blot均显示在高转移潜能乳腺癌细胞中EGFR在基因和蛋白水平的表达均显著高于低转移乳腺癌细胞. 结论 EGFR的过表达与乳腺癌细胞侵袭能力显著性相关,EGFR在乳腺癌侵袭过程中发挥了重要的作用.  相似文献   

16.
C M Chuong 《Experientia》1990,46(9):892-899
The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radical Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

17.
Incorporation of E-cadherin into the adherens junction is a highly regulated process required to establish firm cell-cell adhesion in most epithelia. Less is known about the mechanisms that govern the clearance of E-cadherin from the cell surface in both normal and pathological states. In this study, we found that the steady-state removal of E-cadherin in primary cultured pig thyroid cell monolayers is slow and involves intracellular degradation. Experimental abrogation of adhesion by a Ca2+ switch induces rapid cell surface proteolysis of E-cadherin. At the same time, endocytosed intact E-cadherin and newly synthesized E-cadherin accumulate in intracellular compartments that largely escape further degradation. Acute stimulation with thyroid-stimulating hormone (TSH) or forskolin prevents all signs of accelerated E-cadherin turnover. The findings indicate that TSH receptor signaling via cyclic AMP stabilizes the assembly and retention of E-cadherin at the cell surface. This suggests a new mechanism by which TSH supports maintenance of thyroid follicular integrity.Received 23 February 2004; received after revision 14 May 2004; accepted 26 May 2004  相似文献   

18.
The urokinase receptor and integrins in cancer progression   总被引:2,自引:0,他引:2  
Enhanced levels of expression of urokinase receptor (uPAR) and certain integrins have been linked to cancer cell progression. This has classically been attributed to matrix degradation via the activation of the urokinase (uPA)/plasmin system and modulation of cell motility and survival through integrin engagement. More recently, uPAR has been shown to play multiple roles independent of protease activity. Specifically, uPAR has been shown to be intimately involved in the regulation of cell adhesion, migration and proliferation in part through interactions with other membrane partners, including integrins. The goal of this review is to summarize recent insights in the function of uPAR/integrin interactions, to provide a framework for understanding the importance of these interactions in the context of cancer, and to highlight its potential as a target for therapeutic intervention.  相似文献   

19.
Summary The migration of cerebellar granule cells from the external granular layer to the internal granular layer is mediated by the radial Bergmann glial fiber. Recent works have shown that cell adhesion molecules, extra-cellular matrix proteins and proteolytic enzymes or their activators are involved in this process. Immuno-localization studies showed differential temporal and spatial expression patterns of different adhesion molecules, their isoforms, and post-translational modification during different stages of granule cell migration. Functional perturbation experiments using cerebellar explant cultures demonstrated that several adhesion molecules as well as plasminogen activator are involved in granule cell migration and are required in different stages. Other systems used to study granule cell migration including dissociated microwell cultures and granule cell deficient mouse mutants are discussed in the context of adhesion molecules. The results accumulated so far suggest that the migration of granule cells is a complex process in which the cooperation of a group of molecules with different functions, some for adhesion some for de-adhesion, are required to fulfill the different needs during the migratory course.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号