首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The CorA family: Structure and function revisited   总被引:1,自引:0,他引:1  
The CorA family is a group of ion transporters that mediate transport of divalent metal ions across biological membranes. Metal ions are essential elements in most cellular processes and hence the concentrations of ions in cells and organelles must be kept at appropriate levels. Impairment of these systems is implied in a number of pathological conditions. CorA proteins are abundant among the prokaryotic organisms but homologues are present in both human and yeast. The activity of CorA proteins has generally been associated with the transport of magnesium ions but the members of the CorA family can also transport other ions such as cobalt and nickel. The structure of the CorA from Thermotoga maritima, which also was the first structure of a divalent cation transporter determined, has opened the possibilities for understanding the mechanisms behind the ion transport and also corrected a number of assumptions that have been made in the past.  相似文献   

2.
During mitosis, cells detach, and the cell–matrix interactions become restricted. At the completion of cytokinesis, the two daughter cells are still connected transiently by an intercellular bridge (ICB), which is subjected to abscission, as the terminal step of cytokinesis. Cell adhesion to the matrix is mediated by syndecan-4 (SDC4) transmembrane heparan sulfate proteoglycan. Our present work demonstrated that SDC4 promotes cytokinesis in a phosphorylation-dependent manner in MCF-7 breast adenocarcinoma cells. The serine179-phosphorylation and the ectodomain shedding of SDC4 changed periodically in a cell cycle-dependent way reaching the maximum at G2/M phases. On the contrary, the phospho-resistant Ser179Ala mutant abrogated the shedding. The phosphorylated full-length and shed remnants enriched along the mitotic spindles, and subsequently in the ICBs, however, proper membrane insertion was necessary for midbody localization. Expression of phosphomimicking Ser179Glu SDC4 resulted in incomplete abscission, whereas expression of the phospho-resistant SDC4 led to giant, multinucleated cells.  相似文献   

3.
Nitrate and nitrite transport in bacteria   总被引:7,自引:0,他引:7  
The topological arrangements of nitrate and nitrite reductases in bacteria necessitate the synthesis of transporter proteins that carry the nitrogen oxyanions across the cytoplasmic membrane. For assimilation of nitrate (and nitrite) there are two types of uptake system known: ABC transporters that are driven by ATP hydrolysis, and secondary transporters reliant on a proton motive force. Proteins homologous to the latter type of transporter are also involved in nitrate and nitrite transport in dissimilatory processes such as denitrification. These proteins belong to the NarK family, which is a branch of the Major Facilitator Superfamily. The mechanism and substrate specificity of transport via these proteins is unknown, but is discussed in the light of sequence analysis of members of the NarK family. A hypothesis for nitrate and nitrite transport is proposed based on the finding that there are two distinct types of NarK.  相似文献   

4.
Living cells require membranes and membrane transporters for the maintenance of life. After decades of biochemical scrutiny, the structures and molecular mechanisms by which membrane transporters catalyze transmembrane solute movements are beginning to be understood. The plasma membrane proton-translocating adenosine triphosphatase (ATPase) is an archetype of the P-type ATPase family of membrane transporters, which are important in a wide variety of cellular processes. The H+-ATPase has been crystallized and its structure determined to a resolution of 8 angstrom in the membrane plane. When considered together with the large body of biochemical information that has been accumulated for this transporter, and for enzymes in general, this new structural information is providing tantalizing insights regarding the molecular mechanism of active ion transport catalyzed by this enzyme.  相似文献   

5.
The A chain of thrombin is covalently linked to the catalytic B chain but is separate from any known epitope for substrate recognition. In this study we present the results of the Ala replacement of 12 charged residues controlling the stability of the A chain and its interaction with the B chain. Residues Arg4 and Glu8 play a significant role in substrate recognition, even though they are located > 20 A away from residues of the catalytic triad, the primary specificity pocket and the Na+ site. The R4A mutation causes significant perturbation of Na+ binding, fibrinogen clotting and PAR1 cleavage, but modest reduction of protein C activation in the presence of thrombomodulin. These findings challenge our current paradigm of thrombin structure-function relations focused exclusively on the properties of the catalytic B chain, and explain why certain naturally occurring mutations of the A chain cause serious bleeding.  相似文献   

6.
For more than 50 years the Guy's Hospital physician Frederick Pavy (1829-1911) attempted to discredit the theory of his erstwhile teacher, Claude Bernard, that liver glycogen was broken down to supply sugar to the systemic circulation. His opposition was driven by his clinical perceptions and was based on two assumptions: the first was that the kidney was a simple filter through which small molecules would diffuse, so that sugar had to be prevented from reaching the systemic circulation. For Pavy, the liver was the barrier. The second was teleological: he could not believe that nature would operate in what he saw as a defective way, i.e. converting sugar into glycogen and then back again. At the beginning of his long working life Pavy regarded himself as a physiologist and was critical of the stagnancy of English physiology which was kept afloat by amateurs like himself in whatever time they could spare from busy private practice. At the end he came to see his own view of carbohydrate metabolism as symbolic of the schism between responsible clinicians (himself) and irresponsible daydreaming physiologists (his opponents).  相似文献   

7.
Triosephosphate isomerase: a highly evolved biocatalyst   总被引:1,自引:0,他引:1  
Triosephosphate isomerase (TIM) is a perfectly evolved enzyme which very fast interconverts dihydroxyacetone phosphate and d-glyceraldehyde-3-phosphate. Its catalytic site is at the dimer interface, but the four catalytic residues, Asn11, Lys13, His95 and Glu167, are from the same subunit. Glu167 is the catalytic base. An important feature of the TIM active site is the concerted closure of loop-6 and loop-7 on ligand binding, shielding the catalytic site from bulk solvent. The buried active site stabilises the enediolate intermediate. The catalytic residue Glu167 is at the beginning of loop-6. On closure of loop-6, the Glu167 carboxylate moiety moves approximately 2 Å to the substrate. The dynamic properties of the Glu167 side chain in the enzyme substrate complex are a key feature of the proton shuttling mechanism. Two proton shuttling mechanisms, the classical and the criss-cross mechanism, are responsible for the interconversion of the substrates of this enolising enzyme.  相似文献   

8.
Four new hexapeptide analogues of C-terminal Substance P fragment with increased solubility in aqueous solutions are described. The peptides contain histidine in positions 6, 8, 9 and 10, respectively. The effect of the structural changes on the hypotensive activity and antigenic properties of analogues was compared. It was found that substitution of amino acid residues in various positions in the C-terminal hexapeptide of Substance P resulted in different effects on the hypotensive and antigenic properties, respectively. Only the [His6] SP6-11 analogue had an unchanged antigenic structure when compared with the C-terminal region of Substance P, but it showed an almost total loss of hypotensive activity. The [His9] SP6-11 analogue retained 50% of the hypotensive activity of the C-terminal hexapeptide but showed a markedly reduced expression of the antigenic epitope localized in this region of Substance P.  相似文献   

9.
A W Cuthbert 《Experientia》1976,32(10):1321-1323
The inhibitory effects of the pyrazine derivative, amiloride, on sodium transport in an amphibian epithelium has been studied as a function of pH. It is concluded that the charged (guanidinium) group interacts with a negatively charged acid grouping in the membrane. Similarities between sodium channels in excitable membranes and epithelia are highlighted.  相似文献   

10.
The majority of constitutively activating mutations (CAMs) of the thyroid-stimulating hormone receptor display a partially activated receptor. Thus, full receptor activation requires a multiplex activation process. To define impacts of different transmembrane helices (TMHs) on cooperative signal transduction, we combined single CAMs in particular TMHs to double mutations and measured second messenger accumulation of the Gαs and the Gαq pathway. We observed a synergistic increase for basal activity of the Gαs pathway, for all characterized double mutants except for two combinations. Each double mutation, containing CAMs in TMH2, 6 and 7 showed the highest constitutive activities, suggesting that these helices contribute most to Gαs-mediated signaling. No single CAM revealed constitutive activity for the Gαq pathway. The double mutations with CAMs from TMH1, 2, 3 and 6 also exhibited increase for basal Gαq signaling. Our results suggest that TMH2, 6, 7 show selective preferences towards Gαs signaling, and TMH1, 2, 3, 6 for Gαq signaling.  相似文献   

11.
Melatonin is a well-known, nighttime-produced indole found in bacteria, eukaryotic unicellulars, animals or vascular plants. In vertebrates, melatonin is the major product of the pineal gland, which accounts for its increase in serum during the dark phase, but it is also produced by many other organs and cell types. Such a wide distribution is consistent with its multiple and well-described functions which include from the circadian regulation and adaptation to seasonal variations to immunomodulatory and oncostatic actions in different types of tumors. The discovery of its antioxidant properties in the early 1990s opened a new field of potential protective functions in multiple tissues. A special mention should be made regarding the nervous system, where the indole is considered a major neuroprotector. Furthermore, mitochondria appear as one of the most important targets for the indole’s protective actions. Melatonin’s mechanisms of action vary from the direct molecular interaction with free radicals (free radical scavenger) to the binding to membrane (MLT1A and MLT1B) or nuclear receptors (RZR/RORα). Receptor binding has been associated with some, but not all of the indole functions reported to date. Recently, two new mechanisms of cellular uptake involving the facilitative glucose transporters GLUT/SLC2A and the proton-driven oligopeptide transporter PEPT1/2 have been reported. Here we discuss the potential importance that these newly discovered transport systems could have in determining the actions of melatonin, particularly in the mitochondria. We also argue the relative importance of passive diffusion vs active transport in different parts of the cell.  相似文献   

12.
Summary The inhibitory effects of the pyrazine derivative, amiloride, on sodium transport in an amphibian epithelium has been studied as a function of pH. It is concluded that the charged (guanidinium) group interacts with a negatively charged acid grouping in the membrane. Similarities between sodium channels in excitable membranes and epithelia are highlighted.  相似文献   

13.
In mature human skeletal muscle, insulin-stimulated glucose transport is mediated primarily via the GLUT4 glucose transporter. However, in contrast to mature skeletal muscle, cultured muscle expresses significant levels of the GLUT1 glucose transporter. To assess the relative contribution of these two glucose transporters, we used a novel photolabelling techniques to assess the cell surface abundance of GLUT1 and GLUT4 specifically in primary cultures of human skeletal muscle. We demonstrate that insulin-stimulated glucose transport in cultured human skeletal muscle is mediated by GLUT4, as no effect on GLUT1 appearance at the plasma membrane was noted. Furthermore, GLUT4 mRNA and protein increased twofold (p < 0.05), after differentiation, whereas GLUT1 mRNA and protein decreased 55% (p < 0.005). Incubation of differentiated human skeletal muscle cells with a non-peptide insulin mimetic significantly (p < 0.05) increased glucose uptake and glycogen synthesis. Thus, cultured myotubes are a useful tool to facilitate biological and molecular validation of novel pharmacological agents aimed to improve glucose metabolism in skeletal muscle.  相似文献   

14.
Na(+)-dependent D-glucose and D-galactose transport were studied in brush-border membrane vesicles (BBMVs) from kidney cortex isolated from both spontaneously hypertensive rats (SHR) and their normotensive genetic control Wistar-Kyoto (WKY) rats. Initial rates and accumulation ratios of Na(+)-dependent D-glucose and D-galactose transport were significantly lower in SHR compared with WKY, the observed decreases being similar for both substrates. To explain the reduction in sugar transport by renal BBMVs, the density of Na(+)-dependent sugar cotransporters was studied in BBMVs from kidney cortex isolated from SHR and WKY rats. Phlorizin-specific binding and Western blot analysis indicated a reduction in the density of the cotransporters in SHR relative to WKY rats. This reduction was similar to those found for the initial rates and accumulation ratios for D-glucose and D-galactose in SHR. Na+ uptake, studied using 22Na+, was significantly increased in SHR, so the observed reduction in sugar transport could be due to disruption of the Na+ gradient between renal BBMVs in SHR. Furthermore, a significant decrease in the activity of Na(+)-K(+)-ATPase was observed in SHR. In conclusion, changes in the density of the Na(+)-dependent sugar cotransporter and in the Na+ gradient across the brush-border membranes might be involved in the observed reduction in sugar transport by renal BBMVs from SHR.  相似文献   

15.
The ATP binding cassette (ABC) superfamily of membrane transporters is one of the largest protein classes known, and counts numerous proteins involved in the trafficking of biological molecules across cell membranes. The first known human ABC transporter was P-glycoprotein (P-gp), which confers multidrug resistance (MDR) to anticancer drugs. In recent years, we have obtained an increased understanding of the mechanism of action of P-gp as its ATPase activity, substrate specificity and pharmacokinetic interactions have been investigated. This review focuses on the functional characterization of P-gp, as well as other ABC transporters involved in MDR: the family of multidrug-resistance-associated proteins (MRP1-7), and the recently discovered ABC half-transporter MXR (also known as BCRP, ABCP and ABCG2). We describe recent progress in the analysis of protein structure-function relationships, and consider the conceptual problem of defining and identifying substrates and inhibitors of MDR. An in-depth discussion follows of how coupling of nucleotide hydrolysis to substrate transport takes place, and we propose a scheme for the mechanism of P-gp function. Finally, the clinical correlations, both for reversal of MDR in cancer and for drug delivery, are discussed.  相似文献   

16.
G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.  相似文献   

17.
The determination of several of aldose reductase-inhibitor complexes at subatomic resolution has revealed new structural details, including the specific interatomic contacts involved in inhibitor binding. In this article, we review the structures of the complexes of ALR2 with IDD 594 (resolution: 0.66 Å, IC50 (concentration of the inhibitor that produced half-maximal effect): 30 nM, space group: P21), IDD 393 (resolution: 0.90 Å, IC50: 6 nM, space group: P1), fidarestat (resolution: 0.92 Å, IC50: 9 nM, space group: P21) and minalrestat (resolution: 1.10 Å, IC50: 73 nM, space group: P1). The structures are compared and found to be highly reproductible within the same space group (root mean square (RMS) deviations: 0.15 0.3 Å). The mode of binding of the carboxylate inhibitors IDD 594 and IDD 393 is analysed. The binding of the carboxylate head can be accurately determined by the subatomic resolution structures, since both the protonation states and the positions of the atoms are very precisely known. The differences appear in the binding in the specificity pocket. The high-resolution structures explain the differences in IC50, which are confirmed both experimentally by mass spectrometry measures of VC50 and theoretically by free energy perturbation calculations. The binding of the cyclic imide inhibitors fidarestat and minalrestat is also described, focusing on the observation of a Cl- ion which binds simultaneously with fidarestat. The presence of this anion, binding also to the active site residue His110, leads to a mechanism in which the inhibitor can bind in a neutral state and then become charged inside the active site pocket. This mechanism can explain the excellent in vivo properties of cyclic imide inhibitors. In summary, the complete and detailed information supplied by the subatomic resolution structures can explain the differences in binding energy of the different inhibitors.  相似文献   

18.
Synthetic peptides derived from the C-terminal end of the human complement serine protease C1s were analysed by circular dichroism and nuclear magnetic resonance (NMR) spectroscopy. Circular dichroism indicates that peptides 656-673 and 653-673 are essentially unstructured in water and undergo a coil-to-helix transition in the presence of increasing concentrations of trifluoroethanol. Two-dimensional NMR analyses performed in water/trifluoroethanol solutions provide evidence for the occurrence of a regular α-helix extending from Trp659 to Ser668 (peptide 656-673), and from Tyr656 to Ser668 (peptide 653-673), the C-terminal segment of both peptides remaining unstructured under the conditions used. Based on these and other observations, we propose that the serine protease domain of C1s ends in a 13-residue α-helix (656Tyr-Ser668) followed by a five-residue C-terminal extension. The latter appears to be flexible and is probably locked within C1s through a salt bridge involving Glu672. Received 19 November 1997; accepted 24 November 1997  相似文献   

19.
Amino acid transporters are essential components of prokaryote and eukaryote cells, possess distinct physiological functions, and differ markedly in substrate specificity. Amino acid transporters can be both drug targets and drug transporters (bioavailability, targeting) with many monogenic disorders resulting from dysfunctional membrane transport. The largest collection of amino acid transporters (including the mammalian SLC6, SLC7, SLC32, SLC36, and SLC38 families), across all kingdoms of life, is within the Amino acid-Polyamine-organoCation (APC) superfamily. The LeuT-fold is a paradigm structure for APC superfamily amino acid transporters and carriers of sugars, neurotransmitters, electrolytes, osmolytes, vitamins, micronutrients, signalling molecules, and organic and fatty acids. Each transporter is specific for a unique sub-set of solutes, specificity being determined by how well a substrate fits into each binding pocket. However, the molecular basis of substrate selectivity remains, by and large, elusive. Using an integrated computational and experimental approach, we demonstrate that a single position within the LeuT-fold can play a crucial role in determining substrate specificity in mammalian and arthropod amino acid transporters within the APC superfamily. Systematic mutation of the amino acid residue occupying the equivalent position to LeuT V104 titrates binding pocket space resulting in dramatic changes in substrate selectivity in exemplar APC amino acid transporters including PAT2 (SLC36A2) and SNAT5 (SLC38A5). Our work demonstrates how a single residue/site within an archetypal structural motif can alter substrate affinity and selectivity within this important superfamily of diverse membrane transporters.  相似文献   

20.
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号