首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The hypothalamus regulates diverse physiological functions, including the control of energy metabolism, circadian rhythms, stress and anxiety, sexual and reproductive behaviors. An overview of the most prevalent hypothalamus-enriched mRNAs revealed that this area of the brain specializes in producing intercellular signaling molecules. Two new secreted peptides derived from a single neuropeptide precursor, named hypocretins and orexins by two different groups, are synthesized in a small set of neurons in the perifornical area of the hypothalamus. Intracerebroventricular injection of the hypocretins/orexins increases food consumption in rats. Here we review recent progress in identifying the role of the hypocretins/orexins in the control of energy balance and in other physiological systems.  相似文献   

3.
Two new beta-adrenoceptor blocking drugs with acute antihypertensive and positive inotropic effects are described: Compound A (2-[4-(3-tert.butylamino-2-hydroxypropoxy)phenyl]-4-trifluoromethylimidazole) and MK-761 (2-(3-tert.butylamine-2-hydroxypropoxy)-3-cyanopyridine hydrochloride). In SH rats both compounds, given orally, lowered arterial pressure and were more potent than hydralazine. The antihypertensive effect of compound A but not of MK-761 was antagonized by timolol. Both compounds had positive inotropic activity on cat heart papillary muscles; these effects were antagonized by timolol. The pretreatment of animals with reserpine greatly reduced the positive inotropic effect of MK-761 but not of compound A. The acute antihypertensive and positive inotropic effects of compound A are like to be at least partially due to stimulation of beta-adrenoceptors, e.g. intrinsic sympathomimetic activity. The effects of MK-761 on the same parameters appear to be mediated by different mechanisms.  相似文献   

4.
5.
We examined chemical reactions in mouse lysozyme after incubation under physiological conditions (pH 7 and 37°C). After incubation for 8 weeks, racemization was observed specifically at Asn127 among the 19 Asp/Asn residues in mouse lysozyme. Furthermore, analysis of the primary structure showed that the racemized residue was not Asp, but Asn, which demonstrates that deamidation and isomerization did not occur. These results mean that this racemization occurs without forming a succinimide intermediate. This is the first example of D-asparaginyl formation in a protein occurring during the racemization process under physiological conditions.Received 16 September 2004; received after revision 26 October 2004; accepted 12 November 2004  相似文献   

6.
Microbes have a fascinating repertoire of bioenergetic enzymes and a huge variety of electron transport chains to cope with very different environmental conditions, such as different oxygen concentrations, different electron acceptors, pH and salinity. However, all these electron transport chains cover the redox span from NADH + H+ as the most negative donor to oxygen/H2O as the most positive acceptor or increments thereof. The redox range more negative than −320 mV has been largely ignored. Here, we have summarized the recent data that unraveled a novel ion-motive electron transport chain, the Rnf complex, that energetically couples the cellular ferredoxin to the pyridine nucleotide pool. The energetics of the complex and its biochemistry, as well as its evolution and cellular function in different microbes, is discussed.  相似文献   

7.
Aquaglyceroporins: implications in adipose biology and obesity   总被引:1,自引:1,他引:0  
Aquaporins (AQPs) are membrane water/glycerol channels that are involved in many physiological processes. Their primary function is to facilitate the bidirectional transfer of water and small solutes across biological membranes in response to osmotic gradients. Aquaglyceroporins, a subset of the AQP family, are the only mammalian proteins with the ability to permeate glycerol. For a long time, AQP7 has been the only aquaglyceroporin associated with the adipose tissue, which is the major source of circulating glycerol in response to the energy demand. AQP7 dysregulation was positively correlated with obesity onset and adipocyte glycerol permeation through AQP7 was appointed as a novel regulator of adipocyte metabolism and whole-body fat mass. Recently, AQP3, AQP9, AQP10 and AQP11 were additionally identified in human adipocytes and proposed as additional glycerol pathways in these cells. This review contextualizes the importance of aquaglyceroporins in adipose tissue biology and highlights aquaglyceroporins’ unique structural features which are relevant for the design of effective therapeutic compounds. We also refer to the latest advances in the identification and characterization of novel aquaporin isoforms in adipose tissue. Finally, considerations on the actual progress of aquaporin research and its implications on obesity therapy are suggested.  相似文献   

8.
9.
α-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid (AMPA) receptors are one type of ionotropic glutamate receptor involved in rapid excitatory synaptic transmission. AMPA receptors have been increasingly implicated in long-term potentiation, and recent evidence suggests that they may play a role in disorders affecting the nervous system. The finding that early in postnatal development AMPA receptors are not expressed has lately been the focus of much attention. Resolving the factors involved in AMPA receptor expression suggests that their induction is a developmentally regulated process with the possibility that alterations in receptor expression may be correlated with pathology in neurological disorders. This paper provides an overview of factors involved in AMPA receptor induction as well as of their role in plasticity and neuronal pathologies. Received 5 December 2000; received after revision 12 January 2001; accepted 2 February 2001  相似文献   

10.
Intensive research in the last decade shows that the prototypic angiogenic factor vascular endothelial growth factor (VEGF) can have direct effects in neurons and modulate processes such as neuronal migration, axon outgrowth, axon guidance and neuronal survival. Depending on the neuronal cell type and the process, VEGF seems to exert these effects by signaling via different receptors. It is also becoming clear that other VEGF ligands such as VEGF-B, -C and -D can act in various neuronal cell types as well. Moreover, apart from playing a role in physiological conditions, VEGF and VEGF-B have been related to different neurological disorders. We give an update on how VEGF controls different processes during neurodevelopment as well as on its role in several neurodegenerative disorders. We also discuss recent findings demonstrating that other VEGF ligands influence processes such as neurogenesis and dendrite arborization and participate in neurodegeneration.  相似文献   

11.
In plants, RNA editing is a process for converting a specific nucleotide of RNA from C to U and less frequently from U to C in mitochondria and plastids. To specify the site of editing, the cis-element adjacent to the editing site functions as a binding site for the trans-acting factor. Genetic approaches using Arabidopsis thaliana have clarified that a member of the protein family with pentatricopeptide repeat (PPR) motifs is essential for RNA editing to generate a translational initiation codon of the chloroplast ndhD gene. The PPR motif is a highly degenerate unit of 35 amino acids and appears as tandem repeats in proteins that are involved in RNA maturation steps in mitochondria and plastids. The Arabidopsis genome encodes approximately 450 members of the PPR family, some of which possibly function as trans-acting factors binding the cis-elements of the RNA editing sites to facilitate access of an unidentified RNA editing enzyme. Based on this breakthrough in the research on plant RNA editing, I would like to discuss the possible steps of co-evolution of RNA editing events and PPR proteins. Received 30 September 2005; received after revision 5 November 2005; accepted 28 November 2005  相似文献   

12.
Autophagy is a degradative mechanism mainly involved in the recycling and turnover of cytoplasmic constituents from eukaryotic cells. Over the last years, yeast genetic screens have considerably increased our knowledge about the molecular mechanisms of autophagy, and a number of genes involved in fundamental steps of the autophagic pathway have been identified. Most of these autophagy genes are present in higher eukaryotes indicating that this process has been evolutionarily conserved. In yeast, autophagy is mainly involved in adaptation to starvation, but in multicellular organisms this route has emerged as a multifunctional pathway involved in a variety of additional processes such as programmed cell death, removal of damaged organelles and development of different tissue-specific functions. Furthermore, autophagy is associated with a growing number of pathological conditions, including cancer, myopathies and neurodegenerative disorders. The physiological and pathological roles of autophagy, as well as the molecular mechanisms underlying this multifunctional pathway, are discussed in this review.Received 12 January 2004; received after revision 29 January 2004; accepted 4 February 2004  相似文献   

13.
Summary Ring fission ofp, p-DDT was studied in the rat following a single oral dose of 0.74 mg/kg (1.04 Ci) of uniformly ring-labeled14C-DDT. Expired air was passed through a solution of ethanolamine-ethylene glycol monomethyl ether (12) to trap14CO2. A total of 1.6% of the radioactivity administered was recovered in the expired air collected continually for 10 days, indicating that while degradation of the phenyl moiety is not a major route pfp, p-DDT metabolism in the rat, it is equal to the urinary excretion. Nevertheless, these results represent the most radical change accomplished in vivo of a residual insecticide yet reported in mammals.Acknowledgment. We acknowledge the secretarial work of Ms.Elaine Smolko. This study was supported by NIH fellowship No. 1 F22 ES01723-01 and No. HL16264.  相似文献   

14.
15.
HCN channels: Structure, cellular regulation and physiological function   总被引:1,自引:1,他引:1  
Hyperpolarization-activated and cyclic nucleotide-gated (HCN) channels belong to the superfamily of voltage-gated pore loop channels. HCN channels are unique among vertebrate voltage-gated ion channels, in that they have a reverse voltage-dependence that leads to activation upon hyperpolarization. In addition, voltage-dependent opening of these channels is directly regulated by the binding of cAMP. HCN channels are encoded by four genes (HCN1–4) and are widely expressed throughout the heart and the central nervous system. The current flowing through HCN channels, designated Ih or If, plays a key role in the control of cardiac and neuronal rhythmicity (“pacemaker current”). In addition, Ih contributes to several other neuronal processes, including determination of resting membrane potential, dendritic integration and synaptic transmission. In this review we give an overview on structure, function and regulation of HCN channels. Particular emphasis will be laid on the complex roles of these channels for neuronal function and cardiac rhythmicity. Received 22 August 2008; received after revision 22 September 2008; accepted 24 September 2008  相似文献   

16.
17.
Summary The development of optical and neural factors affecting visual acuity is reviewed with the aim of determining the age at which the relationship between optical and neural factors become mature. Delayed development of extrastriate cortical and indirect visual pathways may account for differences in acuity assessed by preferential looking and pattern reversal VEPs.  相似文献   

18.
J V Odom  M Green 《Experientia》1984,40(11):1178-1181
The development of optical and neural factors affecting visual acuity is reviewed with the aim of determining the age at which the relationship between optical and neural factors become mature. Delayed development of extrastriate cortical and indirect visual pathways may account for differences in acuity assessed by preferential looking and pattern reversal VEPs.  相似文献   

19.
Ring fission of p, p'-DDT was studied in the rat following a single oral dose of 0.74 mg/kg (1.04 muCi) of uniformly ring-labeled 14C-DDT. Expired air was passed through a solution of ethanolamine-ethylene glycol monomethyl ether (1:2) to trap 14CO2. A total of 1.6% of the radioactivity administered was recovered in the expired air collected continually for 10 days, indicating that while degradation of the phenyl moiety is not a major route of p,p'-DDT metabolism in the rat, it is equal to the urinary excretion. Nevertheless, these results represent the most radical change accomplished in vivo of a residual insecticide yet reported in mammals.  相似文献   

20.
The melanocortins are a family of bioactive peptides derived from proopiomelanocortin, and share significant structural similarity. Those peptides are best known for their stimulatory effects on pigmentation and steroidogenesis. Melanocortins are synthesized in various sites in the central nervous system and in peripheral tissues, and participate in regulating multiple physiological functions. Research during the past decade has provided evidence that melanocortins elicit their diverse biological effects by binding to a distinct family of G protein-coupled receptors with seven transmembrane domains. To date, five melanocortin receptor genes have been cloned and characterized. Those receptors differ in their tissue distribution and in their ability to recognize the various melanocortins and the physiological antagonists, agouti signaling protein and agouti-related protein. These advances have opened new horizons for exploring the significance of melanocortins, their antagonists, and their receptors in a variety of important physiological functions. Received 5 October 2000; accepted 10 November 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号