首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
In multicellular organisms, the coordination of cell behaviors largely relies on biochemical and biophysical signals. Understanding how such signals control development is often challenging, because their distribution relies on the activity of individual cells and, in a feedback loop, on tissue behavior and geometry. This review focuses on one of the best-studied structures in biology, the shoot apical meristem (SAM). This tissue is responsible for the production of all the aerial parts of a plant. In the SAM, a population of stem cells continuously produces new cells that are incorporated in lateral organs, such as leaves, branches, and flowers. Organogenesis from stem cells involves a tight regulation of cell identity and patterning as well as large-scale morphogenetic events. The gene regulatory network controlling these processes is highly coordinated in space by various signals, such as plant hormones, peptides, intracellular mobile factors, and mechanical stresses. Many crosstalks and feedback loops interconnecting these pathways have emerged in the past 10 years. The plant hormone auxin and mechanical forces have received more attention recently and their role is more particularly detailed here. An integrated view of these signaling networks is also presented in order to help understanding how robust shape and patterning can emerge from these networks.  相似文献   

3.
Fine-tuning of cell signaling by glypicans   总被引:1,自引:1,他引:0  
Signaling peptides of the extracellular environment regulate cell biological processes underlying embryonic development, tissue homeostasis, and pathophysiology. The heparan sulphate proteoglycans, glypicans, have evolved as essential modulators of key regulatory proteins such as Wnt, Bmp, Fgf, and Shh. By acting on signal spreading and receptor activation, glypicans can control signal read-out and fate in targeted cells. Genetic and embryological studies have highlighted that glypicans act in a temporal and spatially regulated manner to modulate distinct cellular events. However, alterations of glypican function underlie human congenital malformations and cancer. Recent reports are starting to reveal their mechanism of action and how they can ensure tight modulation of cell signaling.  相似文献   

4.
This review covers recent findings concerning the specification of the photoreceptor subtypes in the Drosophila eye. Particular attention is paid to aspects of retinal patterning and differentiation where relative timing of events seems to be tightly controlled and essential for proper assembly of the compound eye. For example, specification of the founding photoreceptors of each cluster requires sequential positive and negative signaling through the Notch pathway, and reiterated signaling through the epidermal growth factor receptor leads to the pairwise recruitment of the distinct types of photoreceptors in discrete zones across the eye. Results suggest that different signaling environments for these two receptors may exist across the disc, and that receiving cells may constantly shift their predisposition to respond to such signals by adopting given fates. In addition, considerable data exist that the rate of expansion of retinal patterning across the disc is restricted to allow the orderly patterning of retinal precursors, and that one mechanism for controlling this rate may be the co-ordinated expression anterior to the furrow of factors which both inhibit and promote the expansion of retinal patterning. Finally, this review considers the possibility that the morphogenetic furrow serves as a moving source of morphogens which supply spatial information to both anterior and posterior tissue, providing temporal cues that regulate the many events involved in orderly assembly of the precise array of retinal cell types in the compound eye.  相似文献   

5.
Ion channels in plant signaling   总被引:5,自引:0,他引:5  
Plant ion channel activities are rapidly modulated in response to several environmental and endogenous stimuli such as light, pathogen attack and phytohormones. Electrophysiological as well as pharmacological studies provide strong evidence that ion channels are essential for the induction of specific cellular responses, implicating their tight linkage to signal transduction cascades. Ion channels propagate signals by modulating the membrane potential or by directly affecting cellular ion composition. In addition, they may also be effectors at the end of signaling cascades, as examplified by ion channels which determine the solute content of stomatal guard cells. Plant channels are themselves subject to regulation by a variety of cellular factors, including calcium, pH and cyclic nucleotides. In addition, they appear to be regulated by (de)-phosphorylation events as well as by direct interactions with cytoskeletal and other cellular proteins. This review summarizes current knowledge on the role of ion chan nels in plant signaling.  相似文献   

6.
Redox regulation of endothelial cell fate   总被引:1,自引:1,他引:0  
  相似文献   

7.
Cell motility is defined as cell movement in the three-dimensional space leading to repositioning of the cell. Atypical protein kinase C (aPKC, including ζ and λ/ι) are a subfamily of PKC. Different from classic PKC and novel PKC, the activation of atypical PKC is not dependent on diacylglycerol or calcium. PKCζ can be activated by lipid components, such as phosphatidylinositols, phosphatidic acid, arachidonic acid, and ceramide. Both phosphatidylinositol (3,4,5)-trisphosphate and PDK1 are necessary for the complete and stable activation of PKCζ. Atypical PKC is involved in the regulation of cell polarization, directional sensing, formation of filopodia, and cell motility. It is essential for migration and invasion of multiple cancer cell types. Particularly, atypical PKC has been found in the regulation of the motility of hematopoietic cells. It also participates in the regulation of proteolytic activity of podosomes and invadopodia. It has been found that atypical PKC can work coordinately with other PKC subfamily members and other signaling pathways. Research on the roles of atypical PKC in cell motility may lead to new therapeutic strategies for cancer and other diseases.  相似文献   

8.
The thyroid hormone plays a fundamental role in the development, growth, and metabolic homeostasis in all vertebrates by affecting the expression of different sets of genes. A group of thioredoxin fold-containing selenoproteins known as deiodinases control thyroid hormone action by activating or inactivating the precursor molecule thyroxine that is secreted by the thyroid gland. These pathways ensure regulation of the availability of the biologically active molecule T3, which occurs in a time-and tissue-specific fashion. In addition, because cells and plasma are in equilibrium and deiodination affects central thyroid hormone regulation, these local deiodinase-mediated events can also affect systemic thyroid hormone economy, such as in the case of non-thyroidal illness. Heightened interest in the field has been generated following the discovery that the deiodinases can be a component in both the Sonic hedgehog signaling pathway and the TGR-5 signaling cascade, a G-protein-coupled receptor for bile acids. These new mechanisms involved in deiodinase regulation indicate that local thyroid hormone activation and inactivation play a much broader role than previously thought. Received 29 August 2007; received after revision 11 October 2007; accepted 16 October 2007  相似文献   

9.
Embryonic stem cells (ESCs) have been used extensively as in vitro models of neural development and disease, with special efforts towards their conversion into forebrain progenitors and neurons. The forebrain is the most complex brain region, giving rise to several fundamental structures, such as the cerebral cortex, the hypothalamus, and the retina. Due to the multiplicity of signaling pathways playing different roles at distinct times of embryonic development, the specification and patterning of forebrain has been difficult to study in vivo. Research performed on ESCs in vitro has provided a large body of evidence to complement work in model organisms, but these studies have often been focused more on cell type production than on cell fate regulation. In this review, we systematically reassess the current literature in the field of forebrain development in mouse and human ESCs with a focus on the molecular mechanisms of early cell fate decisions, taking into consideration the specific culture conditions, exogenous and endogenous molecular cues as described in the original studies. The resulting model of early forebrain induction and patterning provides a useful framework for further studies aimed at reconstructing forebrain development in vitro for basic research or therapy.  相似文献   

10.
Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis.  相似文献   

11.
The role of Sonic hedgehog in neural tube patterning   总被引:3,自引:0,他引:3  
In the developing neural tube of vertebrate embryos, many types of neural and nonneuronal cells differentiate in response to the secreted signalling molecule, Shh. Shh shows a spatially restricted pattern of expression in cells located at the ventral midline, yet governs the differentiation of diverse cell types throughout the ventral half of the neural tube. Here, we describe how the distinct fate assumed by cells in response to Shh is dependent upon their position with respect to both the dorso-ventral and anterior-posterior axes of the neural tube and describe the ways in which a single factor, Shh, is able to pattern the developing nervous system. We first discuss the evidence that Shh does impose ventral identity on cells in the neural tube, then focus on the role of a graded Shh signal in patterning the neural tube and finally discuss the interaction of Shh with other factors that affect its signalling outcome.  相似文献   

12.
13.
14.
Reactive oxygen species (ROS) are cellular signals but also disease triggers; their relative excess (oxidative stress) or shortage (reductive stress) compared to reducing equivalents are potentially deleterious. This may explain why antioxidants fail to combat diseases that correlate with oxidative stress. Instead, targeting of disease-relevant enzymatic ROS sources that leaves physiological ROS signaling unaffected may be more beneficial. NADPH oxidases are the only known enzyme family with the sole function to produce ROS. Of the catalytic NADPH oxidase subunits (NOX), NOX4 is the most widely distributed isoform. We provide here a critical review of the currently available experimental tools to assess the role of NOX and especially NOX4, i.e. knock-out mice, siRNAs, antibodies, and pharmacological inhibitors. We then focus on the characterization of the small molecule NADPH oxidase inhibitor, VAS2870, in vitro and in vivo, its specificity, selectivity, and possible mechanism of action. Finally, we discuss the validation of NOX4 as a potential therapeutic target for indications including stroke, heart failure, and fibrosis.  相似文献   

15.
Many organs, such as lungs, nerves, blood and lymphatic vessels, consist of complex networks that carry flows of information, gases, and nutrients within the body. The morphogenetic patterning that generates these organs involves the coordinated action of developmental signaling cues that guide migration of specialized cells. Precision guidance of endothelial tip cells by vascular endothelial growth factors (VEGFs) is well established, and several families of neural guidance molecules have been identified to exert guidance function in both the nervous and the vascular systems. This review discusses recent advances in VEGF research, focusing on the emerging role of neural guidance molecules as key regulators of VEGF function during vascular development and on the novel role of VEGFs in neural cell migration and nerve wiring.  相似文献   

16.
This review discusses multiple ways in which the endoplasmic reticulum participates in and is influenced by signal transduction pathways. The endoplasmic reticulum provides a Ca2+ store that can be mobilized either by calcium-induced calcium release or by the diffusible messenger inositol 1,4,5-trisphosphate. Depletion of endoplasmic reticulum Ca2+ stores provides a signal that activates surface membrane Ca2+ channels, a process known as capacitative calcium entry. Depletion of endoplasmic reticulum stores can also signal long-term cellular responses such as gene expression and programmed cell death or apoptosis. In addition to serving as a source of cellular signals, the endoplasmic reticulum is also functionally and structurally modified by the Ca2+ and protein kinase C pathways. Elevated cytoplasmic Ca2+ causes a rearrangement and fragmentation of endoplasmic reticulum membranes. Protein kinase C activation reduces the storage capacity of the endoplasmic reticulum Ca2+ pool. In some cell types, protein kinase C inhibits capacitative calcium entry. Protein kinase C activation also protects the endoplasmic reticulum from the structural effects of high cytoplasmic Ca2+. The emerging view is one of a complex network of pathways through which the endoplasmic reticulum and the Ca2+ and protein kinase C signaling pathways interact at various levels regulating cellular structure and function.  相似文献   

17.
Wnt signaling is required for neurogenesis, the fate of neural progenitors, the formation of neuronal circuits during development, neuron positioning and polarization, axon and dendrite development and finally for synaptogenesis. This signaling pathway is also implicated in the generation and differentiation of glial cells. In this review, we describe the mechanisms of action of Wnt signaling pathways and their implication in the development and correct functioning of the nervous system. We also illustrate how a dysregulated Wnt pathway could lead to psychiatric, neurodegenerative and demyelinating pathologies. Lithium, used for the treatment of bipolar disease, inhibits GSK3β, a central enzyme of the Wnt/β-catenin pathway. Thus, lithium could, to some extent, mimic Wnt pathway. We highlight the possible dialogue between lithium therapy and modulation of Wnt pathway in the treatment of the diseases of the nervous system.  相似文献   

18.
19.
20.
Advances in the study of hematopoietic cell maturation have paved the way to a deeper understanding the stem and progenitor cellular hierarchy in the mammary gland. The mammary epithelium, unlike the hematopoietic cellular hierarchy, sits in a complex niche where communication between epithelial cells and signals from the systemic hormonal milieu, as well as from extra-cellular matrix, influence cell fate decisions and contribute to tissue homeostasis. We review the discovery, definition and regulation of the mammary cellular hierarchy and we describe the development of the concepts that have guided our investigations. We outline recent advances in in vivo lineage tracing that is now challenging many of our assumptions regarding the behavior of mammary stem cells, and we show how understanding these cellular lineages has altered our view of breast cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号