首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Marfan syndrome (MFS) is an autosomal dominant heritable disorder of connective tissue with highly variable clinical manifestations including aortic dilatation and dissection, ectopia lentis, and a range of skeletal anomalies. Mutations in the gene for fibrillin-1 (FBN1) cause MFS and other related disorders of connective tissue collectively termed type-1 fibrillinopathies. Fibrillin-1 is a main component of the 10- to 12-nm extracellular microfibrils that are important for elastogenesis, elasticity, and homeostasis of elastic fibers. Mutations in fibrillin-1 are hypothesized to exert their effects by dominant negative mechanisms, but recent work has also emphasized the potential role of proteases and disturbances in tissue homeostasis in the pathogenesis of the MFS. This article provides an overview of the clinical aspects of the MFS and current thinking on the pathogenesis of this disorder.  相似文献   

2.
Some patients develop Guillain-Barré syndrome (GBS) after the administration of bovine gangliosides. Patients with GBS subsequent to Campylobacter jejuni enteritis frequently have IgG antibody to GM1 ganglioside. Miller Fisher syndrome (MFS), a variant of GBS, is associated with IgG antibody to GQ1b ganglioside. Molecular mimicry between GM1 and lipopolysaccharide of C. jejuni isolated from patients with GBS, and between GQ1b and C. jejuni lipopolysaccharides from patients with MFS have been demonstrated. The molecular mimicry between infectious agents and gangliosides may function in the production of anti-ganglioside antibodies. This sugar mimicry is one possible cause of the Guillain-Barré and Miller Fisher syndromes; however, unidentified host factors may contribute to the development of these syndromes.  相似文献   

3.
The presence of elastic fibres in the extracellular matrix (ECM) provides physiologically important elastic properties for many tissues. Until recently, microfibrils, one component of the ECM, were thought primarily to serve as a scaffolding on which elastin is deposited during development to form elaunin fibres [1]. The most prominent protein that forms mammalian microfibrils is fibrillin. It is known that mutations in the fibrillin gene cause a heterogenous connective tissue disease called marfan syndrome [2], so information on mechanical properties of microfibrils or their role in tissue function would be useful. Microfibrils are also found in the ECM of some invertebrate tissues, and there is growing evidence that the protein forming the structure is homologous to mammalian fibrillin [3, 4]. It has been shown that the microfibril-based arterial wall of the lobster has viscoelastic properties [5], and we have now utilized this primitive artery to measure the modulus of elasticity of microfibrils. It is similar to that of the rubber-like protein elastin.  相似文献   

4.
In 2010, a new recessive cohesinopathy disorder, designated Warsaw breakage syndrome (WABS), was described. The individual with WABS displayed microcephaly, pre- and postnatal growth retardation, and abnormal skin pigmentation. Cytogenetic analysis revealed mitomycin C (MMC)-induced chromosomal breakage; however, an additional sister chromatid cohesion defect was also observed. WABS is genetically linked to bi-allelic mutations in the ChlR1/DDX11 gene which encodes a protein of the conserved family of Iron–Sulfur (Fe–S) cluster DNA helicases. Mutations in the budding yeast ortholog of ChlR1, known as Chl1, were known to cause sister chromatid cohesion defects, indicating a conserved function of the gene. In 2012, three affected siblings were identified with similar symptoms to the original WABS case, and found to have a homozygous mutation in the conserved Fe–S domain of ChlR1, confirming the genetic linkage. Significantly, the clinically relevant mutations perturbed ChlR1 DNA unwinding activity. In addition to its genetic importance in human disease, ChlR1 is implicated in papillomavirus genome maintenance and cancer. Although its precise functions in genome homeostasis are still not well understood, ongoing molecular studies of ChlR1 suggest the helicase plays a critically important role in cellular replication and/or DNA repair.  相似文献   

5.
Epigenetic mechanisms play an important role in gene regulation during development. DNA methylation, which is probably the most important and best-studied epigenetic mechanism, can be abnormally regulated in common pathologies, but the origin of altered DNA methylation remains unknown. Recent research suggests that these epigenetic alterations could depend, at least in part, on genetic mutations or polymorphisms in DNA methyltransferases and certain genes encoding enzymes of the one-carbon metabolism pathway. Indeed, the de novo methyltransferase 3B (DNMT3B) has been recently found to be mutated in several types of cancer and in the immunodeficiency, centromeric region instability and facial anomalies syndrome (ICF), in which these mutations could be related to the loss of global DNA methylation. In addition, mutations in glycine-N-methyltransferase (GNMT) could be associated with a higher risk of hepatocellular carcinoma and liver disease due to an unbalanced S-adenosylmethionine (SAM)/S-adenosylhomocysteine (SAH) ratio, which leads to aberrant methylation reactions. Also, genetic variants of chromatin remodeling proteins and histone tail modifiers are involved in genetic disorders like α thalassemia X-linked mental retardation syndrome, CHARGE syndrome, Cockayne syndrome, Rett syndrome, systemic lupus erythematous, Rubinstein–Taybi syndrome, Coffin–Lowry syndrome, Sotos syndrome, and facioescapulohumeral syndrome, among others. Here, we review the potential genetic alterations with a possible role on epigenetic factors and discuss their contribution to human disease.  相似文献   

6.
Matricellular proteins interact with the extracellular matrix (ECM) and modulate cellular processes by binding to cell surface receptors and initiating intracellular signal transduction. Their association with the ECM and the ability of some members of this protein family to regulate cell motility have opened up new avenues of research to investigate their functions in normal and diseased cells. In this review, we summarize the research on CyrA, an ECM calmodulin-binding protein in Dictyostelium. CyrA is proteolytically cleaved into smaller EGF-like (EGFL) repeat containing cleavage products during development. The first EGFL repeat of CyrA binds to the cell surface and activates a novel signalling pathway that modulates cell motility in this model organism. The similarity of CyrA to the most well-characterized matricellular proteins in mammals allows it to be designated as the first matricellular protein identified in Dictyostelium.  相似文献   

7.
Summary Mouse embryo neurulae were exposed in vitro to phospholipase C to examine the role of carbohydrate-rich extracellular material (ECM) during neurulation. Exposure of embryos to this agent for 12 h resulted in failure of closure of the neural tube. Ultrastructural examination revealed an absence of ECM from regions of the neural tube which failed to close.This study was supported by a grant from the National Fund for Research into Crippling Diseases.  相似文献   

8.
CCN2, also known as connective tissue growth factor, is a member of the CCN (CCN1–6) family of modular matricellular proteins. Analysis of CCN2 function in vivo has focused primarily on its key role as a mediator of excess ECM synthesis in multiple fibrotic diseases. However, CCN2 and related family members are widely expressed during development. Recent studies using new genetic models are revealing that CCN2 has essential roles in the development of many tissues. This review focuses on current and emerging data on CCN2 and its functions in chondrogenesis and angiogenesis, and on new studies showing that CCN2 has essential functions during embryonic and postnatal development in a number of epithelial tissues.  相似文献   

9.
Regulatory mechanisms of atrial fibrotic remodeling in atrial fibrillation   总被引:2,自引:0,他引:2  
Electrical, contractile and structural remodeling have been characterized in atrial fibrillation (AF), and the latter is considered to be the major contributor to AF persistence. Recent data show that interstitial fibrosis can predispose to atrial conduction impairment and AF induction. The interplay between cardiac matrix metalloproteinases (MMPs) and their endogenous inhibitors, tissue inhibitors of MMPs (TIMPs), is thought to be critical in atrial extracellular matrix (ECM) metabolism. At the molecular level, angiotensin II, transforming growth factor-beta1, inflammation and oxidative stress are particularly important for ECM dysregulation and atrial fibrotic remodeling in AF. Therefore, we review recent advances in the understanding of the atrial fibrotic process, the major downstream components in this remodeling process, and the expression and regulation of MMPs and TIMPs. We also describe the activation of bioactive molecules in both clinical studies and animal models to modulate MMPs and TIMPs and their effects on atrial fibrosis in AF.  相似文献   

10.
Adipocyte extracellular matrix composition, dynamics and role in obesity   总被引:1,自引:0,他引:1  
The central role of the adipose tissue in lipid metabolism places specific demands on the cell structure of adipocytes. The protein composition and dynamics of the extracellular matrix (ECM) is of crucial importance for the functioning of those cells. Adipogenesis is a bi-phasic process in which the ECM develops from a fibrillar to a laminar structure as cells move from the commitment phase to the growth phase characterized by storage of vast amounts of triglycerides. Mature adipocytes appear to spend a lot of energy on the maintenance of the ECM. ECM remodeling is mediated by a balanced complement of constructive and destructive enzymes together with their enhancers and inhibitors. ECM remodeling is an energy costing process regulated by insulin, by the energy metabolism, and by mechanical forces. In the obese, overgrowth of adipocytes may lead to instability of the ECM, possibly mediated by hypoxia.  相似文献   

11.
In Drosophila, four genes encode for laminin subunits and the formation of two laminin heterotrimers has been postulated. We report the identification of mutations in the Drosophila LamininB2 (LanB2) gene that encodes for the only laminin γ subunit and is found in both heterotrimers. We describe their effects on embryogenesis, in particular the differentiation of visceral tissues with respect to the ECM. Analysis of mesoderm endoderm interaction indicates disrupted basement membranes and defective endoderm migration, which finally interferes with visceral myotube stretching. Extracellular deposition of laminin is blocked due to the loss of the LanB2 subunit, resulting in an abnormal distribution of ECM components. Our data, concerning the different function of both trimers during organogenesis, suggest that these trimers might act in a cumulative way and probably at multiple steps during ECM assembly. We also observed genetic interactions with kon-tiki and thrombospondin, indicating a role for laminin during muscle attachment.  相似文献   

12.
Joubert syndrome and related diseases (JSRD) are cerebello-oculo-renal syndromes with phenotypes including cerebellar hypoplasia, retinal dystrophy, and nephronophthisis (a cystic kidney disease). Mutations in AHI1 are the most common genetic cause of JSRD, with developmental hindbrain anomalies and retinal degeneration being prominent features. We demonstrate that Ahi1, a WD40 domain-containing protein, is highly conserved throughout evolution and its expression associates with ciliated organisms. In zebrafish ahi1 morphants, the phenotypic spectrum of JSRD is modeled, with embryos showing brain, eye, and ear abnormalities, together with renal cysts and cloacal dilatation. Following ahi1 knockdown in zebrafish, we demonstrate loss of cilia at Kupffer’s vesicle and subsequently defects in cardiac left–right asymmetry. Finally, using siRNA in renal epithelial cells we demonstrate a role for Ahi1 in both ciliogenesis and cell–cell junction formation. These data support a role for Ahi1 in epithelial cell organization and ciliary formation and explain the ciliopathy phenotype of AHI1 mutations in man.  相似文献   

13.
In this review, we detail the current understanding of the extracellular matrix (ECM) of the migratory slug phase of the cellular slime mould,Dictyostelium discoideum. We describe some structural and non-structural molecules which comprise the ECM, and how these molecules reflect both plant and animal ECM systems. We also describe zones of the multicellular slug that are known to make ECM components, including the role of the prestalk cells and the slug epithelium-like layer. Finally, we review the contributions of studies on mutant to our understanding of the ECM ofD. discoideum, and relate this to differentiation and development in more complex eukaryotic systems.  相似文献   

14.
G-protein-coupled receptors (GPCRs) can constitute complexes with non-GPCR integral membrane proteins, while such interaction has not been demonstrated at a single molecule level so far. We here investigated the potential interaction between the thyrotropin receptor (TSHR) and the monocarboxylate transporter 8 (MCT8), a member of the major facilitator superfamily (MFS), using fluorescence cross-correlation spectroscopy (FCCS). Both the proteins are expressed endogenously on the basolateral plasma membrane of the thyrocytes and are involved in stimulation of thyroid hormone production and release. Indeed, we demonstrate strong interaction between both the proteins which causes a suppressed activation of Gq/11 by TSH-stimulated TSHR. Thus, we provide not only evidence for a novel interaction between the TSHR and MCT8, but could also prove this interaction on a single molecule level. Moreover, this interaction forces biased signaling at the TSHR. These results are of general interest for both the GPCR and the MFS research fields.  相似文献   

15.
Matrix metalloproteinase 19 (MMP-19) is able to process various proteins of the basement membrane. To investigate the impact of MMP-19 activity on endothelial cells in the context of tumor extracellular matrix (ECM), we treated Matrigel matrix with an active recombinant MMP-19 and analyzed its effect on capillary-like formation. Human microvascular endothelial cells (HMEC-1) could not form capillary-like formation on Matrigel treated with recombinant MMP-19. Analyzing the Matrigel proteins, we found that MMP-19 preferentially cleaved nidogen-1. The cleavage site of nidogen-1 was mapped to Thr867-Leu868. This cleavage separates the G3 globular domain containing the binding site for the 1 chain of laminin-1 and collagen IV and thus abolishes the capacity of nidogen-1 to cross-link ECM proteins. Anti-nidogen antibodies directed against the G3 domain of nidogen-1 inhibited the capillary-like structure formation to a similar extent as MMP-19. Since nidogen-1 is thought to stabilize microvessels, MMP-19 might be one of the enzymes that interferes with stabilization or maturation of nascent vasculature.Received 10 March 2004; received after revision 30 April 2004; accepted 26 May 2004  相似文献   

16.
The bone marrow microenvironment plays an important role in promoting hematopoietic progenitor cell proliferation and differentiation and the controlled egress of these developing hematopoietic cells. The establishment of long-term bone marrow cultures, which are thought to mimic hematopoiesis in vitro, and various stromal cell lines has greatly facilitated the analysis of the functions of this microenvironment. Extracellular matrix (ECM) molecules of all three categories (collagens, proteoglycans and glycoproteins) have been identified as part of this microenvironment and have been shown to be involved in, different biological functions such as cell adhesion and anti-adhesion, binding and presentation of various cytokines and regulation of cell growth. It is suggested that these matrix molecules in combination with cytokines are crucial for compartmentalization of the bone marrow. Although many cell adhesion molecules have been characterized on the surface of hematopoietic progenitor cells, the nature of cellular receptors for the ECM components is less well defined. During leukemia, many immature blood cells are released from bone marrow, but it is not yet known whether these abnormalities in hematopoiesis are also caused by an altered microenvironment or altered composition of its extracellular matrix. The elucidation of the involvement of specific ECM-isoforms and as yet not characterized ECM components and their receptors in the bone marrow will certainly help towards a better understanding of these phenomena.  相似文献   

17.
Mevalonate kinase (MK) is an essential enzyme in the isoprenoid biosynthesis pathway which produces numerous biomolecules (isoprenoids) involved in a variety of cellular processes. The indispensability of MK and isoprenoid biosynthesis for human health is demonstrated by the identification of its deficiency as the biochemical and molecular cause of the inherited autoinflammatory disorders mevalonic aciduria and hyperimmunoglobulinemia D and periodic fever syndrome. Since the discovery of the genetic defect, considerable progress has been made in understanding the molecular, biochemical and immunological basis of MK deficiency. Important questions such as which specific protein(s) and/or signaling pathway(s) are affected, however, remain unanswered. Resolving the complete pathophysiology of this disorder is a major challenge, but eventually will give insight into the in vivo role of MK and isoprenoid biosynthesis in inflammation and fever. This may open novel options for antiinflammatory therapies in general. Here, we give a general introduction on isoprenoid biosynthesis, the regulation thereof and deficiencies therein. We review the molecular, biochemical and immunological aspects of MK deficiency and discuss the relations between isoprenoid biosynthesis and inflammation. Finally, we compare MK deficiency with other autoinflammatory syndromes.  相似文献   

18.

Age-related macular degeneration (AMD) is a chronic and progressive degenerative disease of the retina, which culminates in blindness and affects mainly the elderly population. AMD pathogenesis and pathophysiology are incredibly complex due to the structural and cellular complexity of the retina, and the variety of risk factors and molecular mechanisms that contribute to disease onset and progression. AMD is driven by a combination of genetic predisposition, natural ageing changes and lifestyle factors, such as smoking or nutritional intake. The mechanism by which these risk factors interact and converge towards AMD are not fully understood and therefore drug discovery is challenging, where no therapeutic attempt has been fully effective thus far. Genetic and molecular studies have identified the complement system as an important player in AMD. Indeed, many of the genetic risk variants cluster in genes of the alternative pathway of the complement system and complement activation products are elevated in AMD patients. Nevertheless, attempts in treating AMD via complement regulators have not yet been successful, suggesting a level of complexity that could not be predicted only from a genetic point of view. In this review, we will explore the role of complement system in AMD development and in the main molecular and cellular features of AMD, including complement activation itself, inflammation, ECM stability, energy metabolism and oxidative stress.

  相似文献   

19.
Matrix metalloproteinases in tumor invasion   总被引:26,自引:0,他引:26  
Controlled degradation of extracellular matrix (ECM) is essential for the growth, invasion, and metastasis of malignant tumors, and for tumor-induced angiogenesis. Matrix metalloproteinases (MMPs) are a family of zinc-dependent neutral endopeptidases collectively capable of degrading essentially all ECM components and they apparently play an important role in all these aspects of tumor development. Furthermore, recent evidence suggests that MMPs also play a role in tumor cell survival. In this review, we discuss the current concept concerning the role of MMPs and their inhibitors in tumor invasion, as a basis for prognosis and targeted therapeutic intervention in cancer.  相似文献   

20.
Summary Each of the 2 groups of medial neurosecretory cells has 10–12 A and 2–3 B-cells. Each pars intercerebralis lateralis has 3–4 B-cells only. The 2 nervi corporis cardiaci I (NccI) join with the lateral wall of the aorta and Ncc II terminate in corpora cardiaca (Cc). Only 1 corpus allatum is present. The paraldehyde fuchsin positive neurosecretory material is stored in the dorsal aorta and not in the Cc which indicates the neurohaemal nature of the aorta.We are grateful to Prof. U.S. Srivastava for providing laboratory facilities and S.C.S.T. Uttar Pradesh for financial assistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号