首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 78 毫秒
1.
根据坩埚内熔体对流的类型和分布区域,分析控制对流对勾形(cusp)磁场磁感应强度和磁场位形分布的要求,提出了磁场优化设计目标。采用有限元三维(3D)建模法对cusp磁场进行了建模,利用所建立的模型对比了对称结构和非对称结构对磁场位形分布的影响,分析了在非对称cusp磁场线圈横向层数一定的情况下磁场纵向层数、屏蔽体厚度、上下线圈间距对磁感应强度、磁场位形、磁场功率的影响,优化了磁场结构;根据优化的结构参数制造了磁场并进行了实验测试,结果表明非对称cusp磁场的位形分布与设计结果一致,从而验证了3D优化建模方法的有效性。  相似文献   

2.
通过分析磁场对磁控溅射过程的影响,总结出了矩形平面直流磁控溅射装置工作区域磁场的设计原则,并给出了两种磁体结构.采用有限元方法对一套装置的磁场进行了计算,磁场计算结果与测量值吻合较好.基于上述分析计算,研究了磁场分布对靶材刻蚀形貌的影响,并进一步提出了具体的磁场改进措施.采用分流条垫补方法可以改进磁场分布,如果磁场水平分量呈马鞍形分布,靶材的利用率可以提高,采用磁极斜面结构对磁场分布的改进意义不大.另外,错开磁体间安装接缝和对永磁体精确充磁能够有效提高工作区域磁场分布的均匀性.  相似文献   

3.
将带电粒子在非均匀磁场中的运动看成是在均匀磁场中的回旋。进而描述磁场的非均匀性,具体的分析了仅有散度项、曲率项、梯度项不等于零的磁场。介绍一种常见的喇叭形非均匀磁场,讨论了带电粒子在喇叭形磁场中的螺旋轨道半径、纵向速度分量以及运动的角度与磁场的关系和磁约束原理。目的是加深带电粒子在非均匀磁场中运动的理解。  相似文献   

4.
根据矢量格林恒等式,得到了大平面边界上各点磁场的矢量积分关系,进而找到了大平面内测量磁场和未知磁场的积分关系,通过边界剖分离散化形成线性方程组,求解得到未知磁场,达到磁场延拓的目的.延拓得到的大平面磁场能够提高远场磁场的计算精度.实验算例证明了该延拓方法的有效性,表明利用该方法能够较准确地由小范围测量磁场延拓得到大平面...  相似文献   

5.
本文分别计算了圆形和方形两种螺线管的磁场。通过对单匝线圈磁场的积分来求得螺线管的磁场。分析了螺线管似圆电流的非封闭性,进而计算了其等效轴向磁场。  相似文献   

6.
采用数值模拟方法研究了外加永磁体磁场作用下,电阻点焊熔核内的外部磁场、感应磁场及复合磁场强度及其磁场力的分布规律,并对熔化金属的流体流动模式进行了定性分析.结果表明,在外加磁场作用下,点焊熔核内的复合磁场分布以感应磁场为主导,从熔核中心至边缘逐渐增强,其径向磁感应强度分量随着永磁体工作距离增加而逐渐减小.熔核内同时存在由感应磁场生成的位于电极轴对称平面内的磁场力,以及由外加磁场引起的垂直于该平面的磁场力.在该正交磁场力的作用下,熔核内的熔化金属在电极轴对称平面及垂直于该平面的圆周方向同时进行高速流动,并呈现出沿熔核直径方向向外冲击的趋势.  相似文献   

7.
基于磁场摄动技术和广义变分原理得到的磁力公式,对铁磁梁式板在斜磁场作用下的磁场和磁力摄动展开研究,给出了斜磁场作用下铁磁梁式板结构的摄动磁场及其磁力摄动表达式,使得解析分析斜磁场作用下铁磁梁式板磁弹性耦合问题成为可能。研究表明:只有考虑了磁场端部效应的斜磁场磁力摄动公式才能模拟铁磁结构的弯曲模式且能够定性揭示铁磁简支梁式板弯曲构形为双半波形。  相似文献   

8.
采用平均场理论研究了横场下双子晶格Ising变磁体的基态磁性质,计算了基态能量、纵向交错磁矩、纵向磁化率、横向磁矩等重要物理量·分别计算了施加不同横向磁场Ω时纵向交错磁矩ms,z0,纵向磁化率χt,z0和横向总磁矩mt,x0随纵向磁场的变化·结果表明,横向磁场的作用使系统的自旋由与平面垂直方向朝着与平面平行方向偏转,从而阻碍了自旋沿与平面垂直方向的反转·给出了纵向磁场h与横向磁场Ω平面的基态相图,确定了三相点的位置为hi=0 3578,Ω=0 7156·计算表明,在横向磁场较小而纵向磁场较大时,系统发生一级相变;在横向磁场较大而纵向磁场较小时,系统发生二级相变;横向磁场对Ising变磁体的基态...  相似文献   

9.
磁场退火对无取向硅钢再结晶织构和组织的影响   总被引:1,自引:0,他引:1  
为了研究磁场退火对金属材料的再结晶织构和晶粒尺寸的影响,对冷轧无取向硅钢薄板进行了普通退火以及0.1,6和12 T下的磁场退火,磁场沿轧向施加.研究表明,磁场退火显著影响再结晶织构的取向密度和晶粒尺寸,且与磁感应强度成非线性关系.磁场退火增强有利的η(〈001〉∥RD)和{100}织构,减弱不利的γ(〈111〉∥ND)织构,该效应在6 T磁场下较显著;再结晶晶粒尺寸在6 T磁场退火时较大,普通及12T磁场退火时居中,0.1 T磁场退火时较小.从磁场降低晶界可动性和提供与取向相关的附加晶界迁移驱动力的角度,分析了磁场作用机制.  相似文献   

10.
在水下铁磁性腔体上测量地磁场必须消除干扰磁场的影响,其中感应磁场是干扰磁场的主要组成部分,它随着腔体方位的变化而变化。分析腔体感应磁场的有限元计算方法,建立二维、三维数学模型,重点是采用有限元积分法添加了Neumann边界条件,得到了腔体感应磁场方程。通过将二维模型的解析解与数值解相比对,验证了二维和三维感应磁场方程的正确性,从而运用数值计算方法得到腔体位置、姿态变化时感应磁场的分布。  相似文献   

11.
应用统计理论计算了量子环中电子的热力势 和磁矩,研究了温度对量子环磁矩随磁场振荡规律的影响。结果表明:当温度一定时,强磁场作用下的量子环磁矩主要随磁感应强度B的倒数1/B作振荡,而弱磁场时则随B作振荡。对Au量子环,强磁场作用下磁矩随1/B的振荡周期为 ,而弱磁场作用下磁矩随B的振荡周期为 。而磁场一定时,量子环的磁矩随温度成非线性变化。其中磁场较小时,磁矩随温度升高而增大且为负;而磁场较大时,则随温度升高而减小且为正,而一般情况下,磁矩会随温度升高而变号。磁矩随磁场的振荡随温度升高而减弱。  相似文献   

12.
为使超磁致伸缩驱动微泵中超磁致伸缩材料(GMM)棒获得最佳的磁致伸缩性能,在ANSYS Maxwell软件中建立双线圈式驱动磁场、外线圈内永磁体式驱动磁场、内线圈外永磁体式驱动磁场模型,进行仿真分析,得到三种情况下微泵轴线上平均磁场强度和磁场均匀度,并通过试验验证优选结构的磁场强度和均匀度。结果表明:外线圈长度L_(q1)=104 mm,厚度d_(q1)=12.5 mm;内线圈长度L_(q2)=104 mm,厚度d_(q2)=12.5 mm的双线圈式驱动磁场相对于外线圈内永磁体式和内线圈外永磁体式平均磁场强度提高了117%和8.6%,磁场均匀度下降4%。试验结果与仿真结果基本吻合,验证了仿真模型的正确性。  相似文献   

13.
地磁导航中的测量误差是影响地磁导航精度的关键因素,而包括涡流磁场在内的载体干扰磁场是产生误差的主要因素。目前各种运载体大量使用铁磁性材料,这样不可避免地会引起涡流磁场等干扰磁场。因此文中采用COMSOL Multiphysics仿真软件,建立了高速运动载体的涡流干扰场仿真模型。首先研究了永磁体与匀强磁场之间的关系,发现永磁体的剩磁越强,匀强场也越强,为模拟地磁场提供了理论依据。其次分析了载体在匀速转动时涡流磁场对地磁测量的影响,最后研究了载体摆动时的涡流场的分布。结果表明涡流磁场随着速度的增大而增强,且涡流磁场主要分布于载体中间位置。仿真结果为下一步地磁导航中的误差建模以及磁场校正技术的研究提供了理论依据。  相似文献   

14.
本文从单个磁偶极矩产生的磁场,引出等效体磁荷密度和面磁荷密度的概念,进而分析了应用这些磁荷模拟磁质磁化场、永磁体磁场和载流线圈磁场的可能性,从而为电磁场的数值计算提供了数学模型。  相似文献   

15.
研究了半导体内弱耦合二维自旋磁极化子的磁场和温度特性.在有限温度和外加均匀恒定磁场的情况下,应用么正变换和线性组合算符法给出了GaAs晶体内极化子平均数与磁场和温度的依赖关系的理论表示,也作了数值分析.数值计算的结果表明:在某一确定的温度下,弱耦合二维自旋磁极化子平均数随磁场的加强而减小;磁场较弱或温度较高时,平均数变化较剧烈;磁场较强或温度较低时,平均数变化较平缓;当外加磁场确定时,弱耦合二维自旋磁极化子平均数随温度升高而增大;当温度较低或磁场较强时,平均数变化偏离线性关系;当温度较高或磁场较弱时,其变化接近线性关系.  相似文献   

16.
从磁流体动力学方程组出发,用微扰法得出含反常粘滞、反常阻抗、环向磁场和垂向磁场的吸积盘的色散方程。在弱磁场情况下,数值计算结果表明盘内区存在1种不稳定的单调模式和3种稳定的单调模式,磁场对单调不稳定性表现为非稳因素。随着磁场的增强,单调模式消失,盘内出现4种轴对称振荡模式,其中两种振荡模式是脉动稳定的,环向磁场对其表现为非稳因素,垂向磁场对其表现为致稳因素;另两种振荡模式在波数比较小时是不稳定的,随着波数的增大,这两种模式也是脉动稳定的,环向磁场和垂向磁场分别对他们表现为致稳因素和非稳因素。  相似文献   

17.
采用动量和坐标的线性组合算符,同时考虑体内及表面纵光声子与电子的相互作用,计算了磁场中的强耦合表面(或界面)极化子的基态能量、有效质量。结果表明:表面(或界面)极化子基态能量在磁场较弱时,随磁场抛物线性增大。而当磁场较强时随磁场线性增大。对于中间磁场,对表面极化子的基态能量和有效质量作了数值计算。其结果对于解释表面极化子在磁场中的行为是有帮助的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号