首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 656 毫秒
1.
该文为整车降噪的前期工作,从分析声强测量技术的原理出发,有针对性地选择微型车表面声强的测量条件、测量方法,分析了测量过程与结果。利用声强叠加原理,合成每一测点的总声强,并通过表、图点、等声强线等方法对车身表面声强进行描述;根据测量结果,分析了引起微型车表面噪声的原因,分离出引起车外噪声的主噪声源;根据分析结果,最后提出了降低微型车车外噪声的方法和途径。  相似文献   

2.
声强测量法在发动机表面声源识别中的运用   总被引:5,自引:0,他引:5  
在微型客车的车外噪声控制研究中,运用声强测量原理对某微型客车发动机进行了声源识别.对发动机进行了声强测试,通过对声强等值线图的分析和频谱分析,确定了发动机主要噪声辐射源来自于油底壳、排气歧管罩和排气二分管,这些噪声主要是由发动机燃烧激励所引起的.提出了将这些壳类零件进行结构改进作为实施降噪的主要措施之一.  相似文献   

3.
在某微型客车的车外加速噪声控制研究中,运用声强测量原理对某微型客车的表面噪声进行了声强测量,得到了该车的表面辐射噪声的声场分布.综合运用声功率分析方法、声强等高线图分析方法以及频谱分析方法,对其表面辐射噪声进行了声源识别和研究,确定了其主要噪声源是发动机噪声和排气噪声,而车身振动噪声、轮胎噪声、传动系噪声、进气噪声对整车表面辐射噪声的贡献较小.为确定该车车外加速噪声控制的研究重点提供了有效的参考依据.  相似文献   

4.
陈品 《科学技术与工程》2012,12(18):4342-4347
传声器均压孔在平衡腔体内外大气静压的同时,也为其建立了声学低频通道,因而影响到传声器的低频相位特性。基于传声器等效声学模型,对均压孔暴露和未暴露外部测试声场两种状态下的声强探头相位失配误差进行了讨论,并深入分析了驻波声场下均压孔结构对声强探头测试精度的影响。指出具有普通均压孔结构的声强探头通过传递函数修正完全可以达到IEC1043对I级声强探头在驻波声场中的测试精度要求。分析模型和结论的有效性最终通过试验得到了验证。  相似文献   

5.
本文讨论了双通道互谱声强测量时两通道不同步采样造成的相位失配误差;导出了由此而引起的声强测量误差;推导了声强测量时测量系统的误差特征函数,并给出了使用误差特征函数修正该测量误差的方法.实验结果表明,在两通道间不同步采样时,所产生的声强测量误差可以用误差修正的方法加以消除.修正后声强测量结果的精度令人十分满意.  相似文献   

6.
针对四面体及六传声器布置形式的声强阵列测试精度进行数值计算,比较了两种阵列的幅值测量误差及方向判断误差,并通过消声室的测试分析验证数值计算结果.研究结果表明:随着频率的升高,声强测量的幅值误差也相应增加;声强阵列的半径小于0.012 7 m时,频率为6 k Hz时两者测量幅值误差均超过2 d B.在方向性误差判断方面,四传声器比六传声器存在较大的优势.在kd(波数与传声器声强阵列半径的积)小于1.6时,四传声器声强阵列的方向误差判别小于1°.四传声器声强阵列降低了声强测量的硬件系统要求,但在中频阶段完全可以用于相关的建筑声学测试.  相似文献   

7.
SC6360B车外加速噪声的控制   总被引:4,自引:0,他引:4  
为了降低SC6360B车外加速噪声,对该车的噪声控制措施进行了综合性研究.采用声强测量法对整车进行了噪声源识别,确定该车发动机舱泄漏的噪声及排气噪声是车外噪声的主要来源.并依据实验结果对发动机的进一步的声源识别以及对排气噪声的插入损失分析实验.根据实验研究结果及有限元数值分析,最终确定发动机舱噪声的直接泄漏、油底壳罩等附件的振动辐射噪声以及原消声器的消声能力不足是造成车外噪声的主要成因.从而相应提出了对发动机舱隔声降噪、改善油底壳等附件的结构及改进原消声器的综合控制方案.经实验验证, 改进后的车外加速噪声降低了2.5dBA,达到了新的国家标准.  相似文献   

8.
相位失配误差是声强测量系统的主要误差源,仅靠提高仪器的精度很难消除这一误差。文章提出了一种简单易行的修正声强测量系统相位失配误差方法。理论分析和实验验证表明该方法操作简单,修正准确可靠。  相似文献   

9.
基于声强在声学应用研究尤其是在声化学反应中的重要性,简单且快速测量声强的空间分布对声化学反应的放大具有重要意义.介绍了一种由三维定位仪和U型微压差计组成的声辐射压测量装置,将测得的声辐射压转换成声强.利用本方法对水中超声波声强进行了测定,并将测得结果与水听器法测得结果进行比较.结果表明,两者测量精度相当,测量结果达到了实验的要求.压差法测量声强方法简单、快速,测量结果准确.同时还对水中轴向声强衰减进行了测定,测量结果表明,轴向声强随着距离平方成倒数关系,符合声衰减理论规律.  相似文献   

10.
龙芋宏  冯高山 《科学技术与工程》2012,12(34):9439-9441,9452
有效的噪声源识别是降噪工作有效性的根本保证。为了对某重型车车外加速噪声进行控制,首先针对该车车外加速噪声进行了测试。通过对异常噪声的频谱分析,试图找到噪声源,为设计改进提供依据和方向。同时,通过对该重型车整车关键部位的噪声和振动进行测试与分析,发现变速箱左下边大平面处出现跟车外加速噪声测点相同的噪声峰值频率成分,最终确定变速箱为整车车外加速噪声源。通过更换变速箱实现了整车车外加速噪声值达到国标限值以下,验证了该方法的可行性和有效性。  相似文献   

11.
通过对比现有国内外车外噪声测量方法与标准限值,指出国外在通过噪声测量中的最新进展和我国噪声标准法规中有待改进的方向。归纳了目前运动车辆车外噪声源的常用识别方法,为更高效、快捷地识别车辆主要振动噪声源理念提供借鉴作用。总结了国内外对于不同工况下车外通过噪声数值模拟方法,为创建更深入全面的通过噪声预测模型提供一种全局性的思路。  相似文献   

12.
汽车车外加速噪声的模拟研究   总被引:3,自引:0,他引:3  
在研究汽车加速噪声的过程中,建立了车外加速噪声的预测模型。据此对解放CA141汽车的车外加速噪声进行理论分析与试验验证,提出了控制车外加速噪声的措施。  相似文献   

13.
李杰 《科学技术与工程》2012,12(31):8308-8312
为更好评价微型客车的行驶平顺性,根据微型客车实际布置的特点,基于一定假设建立了微型客车1/2汽车七自由度系统振动模型。推导出微型客车的车轮静载荷和各个振动响应量的表达式。应用最新国标GB/T 4970—2009,实现了路面脉冲输入下微型客车行驶平顺性的仿真。为路面随机输入下微型客车行驶平顺性的分析奠定了模型基础。  相似文献   

14.
齿轮是工程机械传动系统的重要部件,工作时要进行高速的运转,齿轮在运转时由于制造精度、刚度等不同情况.会产生不同程度的振动与噪声,齿轮噪声也是传动系统噪声的主要根源。研究齿轮噪声的发生原因及其解决方法.对于降低工程机械整机的噪声及司机室内的噪声都是十分有效的。为此针对齿轮噪声发生的根源,从不同方面提出了控制的方法。  相似文献   

15.
为了提高某平头轻型客车的耐撞性能,组建了网络集群并行计算系统,建立了整车有限元模型,针对正面碰撞做了大量并行计算,对该车进行了耐撞性改进设计。数值算例表明:在8结点机网络集群条件下,并行加速比为6.45,并行效率为80.6%,计算效率得到了显著提高。实车碰撞试验结果表明:改进后该车主梁变形量增加约68mm,测得的加速度峰值降低约1/3,达到中国正面碰撞安全法规CMVDR294的要求。  相似文献   

16.
微型客车的碰撞安全性设计与改进技术研究   总被引:1,自引:0,他引:1  
针对微型客车的碰撞安全性现状,提出了微型客车的碰撞安全性设计与改进策略,探讨了综合利用CAE技术与碰撞试验技术进行微型客车碰撞安全性优化设计的可行性,提出了微型客车碰撞安全性设计与改进的基本步骤.解决了微型客车新产品N1的安全性设计问题和微型客车老产品X477的碰撞安全性改进问题,这两个产品是国内最先开发成功的、完全依靠国内技术达到我国汽车正面碰撞安全法规要求的产品.  相似文献   

17.
以某叉车驾驶室为研究对象,应用了PML方法和边界元法对驾驶室结构振动引起的外辐射声场进行分析预测。在CAE分析过程中,建立了叉车驾驶室PML方法和边界元法声学模型,并以接近实际工况下的振动位移为边界,计算了叉车驾驶室外近场点的声压情况,分析结果表明两种数值方法计算的声场结果基本一致,并与实际场点测试情况对比,测试结果作为CAE数值仿真判断依据,检验了模型的正确性。最后,在此元模型基础上对远场点进行预测分析。两种方法都能有效地分析驾驶室外声场,为结构设计和结构噪声辐射控制提供指导。  相似文献   

18.
HCCI燃烧应用于实际车辆,面临燃烧闭环控制、动态过程控制及HCCI/SI模式过渡控制等难点问题.本文针对这些问题展开研究,基于GT—power软件建立了四缸HCCI/SI复合模式汽油机模型及轿车动力学模型,采用Simulink软件建立了HCCI/SI复合模式汽油机分层闭环控制器.通过典型驾驶过程以及NEDC循环的仿真,对HCCI/SI发动机闭环控制器的动态控制能力和模式切换控制能力进行了研究,详细考察了HCCUSI复合模式汽油机轿车的燃油经济性的改善效果.仿真结果表明,HCCI/SI复合模式汽油机及其控制器可以实现驾驶过程中HCCI与SI模式的比较平滑的过渡,满足车辆行驶的动力需求,并显示出良好的经济性,在整个NEDC循环中比原机节油12.2%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号