首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设Kn(F)是域F上所有n×n交错矩阵构成的线性空间.如果一个算子f:Kn(F)→Kn(F)满足对所有的A,B∈Kn(F)有f(A+B)=f(A)+f(B)并且对任意的X∈Kn(F)有rankf(X)=rankX,则称f是Kn(F)上的加法秩保持.当n是不小于4的整数且F任意时,证明了f是Kn(F)上的加法秩保持当且仅当存在非零的纯量γ、非奇异的n×n矩阵P和域F的单自同态δ满足或者f:[aij]|→αP[aijδ]PT,或者n=4且f:[aij]|→αP([aiδj])PT,其中:K4(F)→K4(F)表示对换(1,4)和(2,3)位置元素及(4,1)和(3,2)位置元素的算子.  相似文献   

2.
域上保持m×n秩1矩阵的函数   总被引:2,自引:0,他引:2  
设F是任意的域,m,n是整数,m,n≥2.对于一个函数f:F→F和F上的一个矩阵A=[aij],用符号Af定义矩阵[f(aij)].如果秩Af=1对F上所有的m×n秩1矩阵A成立,则称f保持m×n秩1矩阵.刻画了F上所有保持m×n秩1矩阵的函数的一般形式.这推广了最近的文献Kalinowski[1,2]中的结论.  相似文献   

3.
D是特征不为2除环,M2(D)表示D上2×2全矩阵代数,文中所刻画的f是M2(D)到自身满足rank(f(A1)f(A2))=rank(f(A2)f(A1))当且仅当rank(A1A2)=rank(A2A1)的加法满射.  相似文献   

4.
F.Sauter(1930)引入了方程,(-i γ_μ ~μ-e/cγ_μA~μ+imc)M=0,其中M是4×4矩阵,以代替Dirac方程,(-i γ_μ ~μ-e/cγ_μA~μ+imc)Ψ=0,其中Ψ是4×1矩阵.F.Sauter(1930),A.Eddington(194)和M.F.Ross(1986)分别给出了这个方程当A~μ=0时的一个特解.本文则借助于广义逆矩阵的理论,求出了这个方程当A~μ=0时的通解.  相似文献   

5.
设P是为数域,应用哈密尔顿-凯莱定理证明了:设B为n阶方阵,若存在n阶方阵A的多项式f(A),使得f(A)(B+b E)=E,则对于A的任意多项式g(A)及B的任意多项式h(B),有g(A)h(B)=h(B)g(A)成立,这里b为P中的元素,E为n阶单位矩阵.进一步地,当P为一个有单位元的结合的交换环时,结论仍然成立.根据线性方程组解的理论,证明了矩阵A的伴随矩阵A~*的多项式及其逆矩阵都可以表示成A的多项式.  相似文献   

6.
刘英 《高师理科学刊》2010,30(2):31-34,49
对几个常见的矩阵秩不等式,讨论其等号成立的条件,并将矩阵和的秩不等式加以细化.得到主要结论:(i)r((A1,,At))=r(Ai)(1≤i≤t)当且仅当有矩阵B与C适合Ai=BA1Ai=AiAtC;(ii)Sylvester不等式r(AB)≥r(A)+r(B)-n中等式成立,当且仅当k≥n-r(k为B的列数,r=r(A),当A=P(Ir0)Q时,B=Q-1(CIn-r)R(P,Q,R为可逆矩阵);(iii)max{r((A,B))-n,r((AB))-m}≤r(A+B)≤min{r((A,B)),r(AB))},(A,B为m×n矩阵),且刻画了等式成立的条件.  相似文献   

7.
曹建兵 《松辽学刊》2007,28(2):49-52
元素为可测函数的函数矩阵在微分方程,概率论,数理统计中都有重要的应用,本文主要讨论当aij(s)是[a,b]→R的可测函数时,对应的A(s)∶[a,b]→n×n阶函数矩阵收敛性质.  相似文献   

8.
本文得到了如下结果: 定理设f(Z)是下级μ有穷的整函数,a_i(Z)i=1,2,…,n,n≤∞)是f(Z)的小函数,且满足则有其中,若f(z),α(z)是亚纯函数时,当满足T(r,α(z))=0{T(r,f)},则称α(z)是f(z)的小函数;特别,当α(z)是整函数时,称α(z)是f(z)的小整函数.  相似文献   

9.
F是任意的一个域,S2(F)表示F上2×2对称矩阵代数,刻画了S2(F)到自身满足f(A)f(B)=f(B)f(A)当且仅当AB=BA的加法满射f的形式.  相似文献   

10.
设B是0-1布尔代数,μmn记B上所有m×n矩阵的集合.如果两个线性算子f.μmn→μmn和g:μmn→满足对一切存在M-P逆的A∈μmn,都有f(A)+存在并且A+=B当且仅当f(A)+=g(B),则称(f,g)为强保持矩阵M-P逆的共变算子对.刻划0-1布尔代数上强保持矩阵M-P逆的共变算子对的结构.  相似文献   

11.
本文证明了 Lusin面积积分函数 S( f)的一个性质 ,即当 f∈Lipα( Rn) ( 0 <α相似文献   

12.
给出当|A|≠ 0时 ,A (k) 的性质和一些与A (k) 有关的矩阵的计算公式 .  相似文献   

13.
设∑P表示单位圆盘E内形如f(z)=z-p+sum from ∞ to k=1(akzk-p)的解析函数类,利用线性算子Lp(a,c)定义了亚纯多叶函数的一子类Ωp+(a,c;A,B),研究了函数f(z)=z-p+sum from ∞ to k=1(︱ak︱zk-p)在类Ωp+(a,c;A,B)中的充分必要条件以及星像函数和凸像函数在类Ωp+(a,c;A,B)中的半径,给出了此类中诸多函数形式的极值函数.  相似文献   

14.
本文引进了推广到无穷区间上的S. Bemstein多项式的更一般的形式 B_n~[P](f;x)=e~(-(nx))~P sum from k=0 to ∞ f(k 1/p/n)(nx)~(pk)/k1 (*)其中f(x)是定义在[0,+∞)上函数,p为正整数,那么O.Szasz所研究的以及文[4]中所引进的S.Bernstein多项式分别是本文中所给出的(*)式中当p=1及p=2时的特殊情况。而且证明了在比文[4]中更弱的条件下,在f(x)的任一连续点x_0处,有同时也得到了在与文[4]中的相同条件(比文[1][2]中的条件简单)下,B_n~[p](f;x)对f(x)的逼近度,并且当f(x)定义在[1,+∞)上时,B_n~[p](f;x)与f(x)的误差比文[4]中的更小。  相似文献   

15.
设Fq是q元有限域,q是素数的幂。令信源集S为Fq上所有的n×n矩阵的等价标准型,编码规则集ET和解码规则集ER为Fq上所有的n×n非奇异矩阵对,信息集为Fq上所有的n×n非零的奇异矩阵,构造映射f:S×ET→M g:M×ER→S∪{欺诈}(Sr,(P,Q))|→PSrQ,(A,(X,Y))|→Sr,如果XKAKY=Sr,秩A=r欺诈,其他其中K=In-100 0。证明了该六元组(S,ET,ER,M;f,g)是一个带仲裁的Cartesian认证码,并计算了该认证码的参数。进而,当收方与发方的编码规则按照等概率均匀分布选取时,计算出该码的概率PI,PS,PT,PR0,PR1。  相似文献   

16.
设F是特征不为2且元素个数大于3的域,n和m是正整数,令Sn(F)和Mn(F)分别是F上n×n对称矩阵空间和全矩阵空间,GLm(F)为F上m阶一般线性群,设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(C),称f为保逆线性映射.刻画了从Sn(F)到Mm(F)以及从Sn(F)到Sm(F)上保逆线性映射.  相似文献   

17.
域上对称矩阵空间上的保逆线性映射   总被引:2,自引:1,他引:1  
设F是特征不为2或3的域,n和m是正整数,且n≤m.设Sn(F)为F上n阶对称矩阵空间,Mm(F)为F上m阶全矩阵空间,GLn(F)为F上n阶一般线性群.设f是从Sn(F)到Mm(F)上的线性映射,若f满足f(X)-1=f(X-1),X∈Sn(F)∩GLn(F),则称f为保逆线性映射,并将保逆线性映射的集合记为N-1(Sn(F),Mm(F)).分别刻画了从Sn(F)到Mm(F)和Sn(F)到Sm(F)上的线性映射.  相似文献   

18.
对于在单位圆盘D={z||z|1}中不取值0与1的正则函数f(z),给出了当|f(0)|=t1,|f(z)|的显式上界;结合王维平,高建福的结果,完整地确定了|f(z)|的显式上界。即:若f(z)∈S(t),则当t≤1,k∈[1,+∞)时|f(z)|≤ηk(t)≤[(2+2)2]k-k1.tk1.(1+t)k-1k;当t1,k≥3时|f(z)|≤ηk(t)≤16k-1.t1k.(1+t)k-k1,其中k=11-+||zz||,t=|f(0)|。  相似文献   

19.
矩阵空间之间的秩的线性保持   总被引:1,自引:0,他引:1  
设m,n是正整数,n≥2,F是包含至少三个元素的域.Mn(F)记F上所有n阶矩阵构成的线性空间,Sn(F)记F上所有n阶对称矩阵构成的线性空间.设V和W是Mn(F)的两个子空间.如果线性算子fV→W满足rankf(X)=rankX对于所有的X∈V成立,则称f是从V到W的秩的线性保持.证明了f是从Sn(F)到Mm(F)的秩的线性保持的充分必要条件是n≤m且存在非奇异矩阵U,V∈Mm(F)满足f(A)=U(A+0)V对于所有的A∈Sn(F)成立.由此,确定了所有的从Sn(F)到Sm(F)及从Mn(F)到Mm(F)的秩的线性保持的一般形式.  相似文献   

20.
令M-1记所有n×n逆M-矩阵的集合,Sk记所有实矩阵其每个kk主子矩阵都是逆M-矩阵的集合.首先证得如果A,BM-1分别是上、下Hessenberg矩阵,则对任意H1,H2S2,AoB和(AoH1)o(BoH2)都是三对角线矩阵(因而是完全非负矩阵);其次证得如果A=(Aij),B=(bij)M-1满足对任意i-j3,aji=bij=0,则对任意H1,H2S3,AoB和(AoH1)o(BoH2)都是五对角线逆M-矩阵.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号