首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
之根k_(m 1),…,k_n的实数部分均为負,即Re(k_s)=-λ_s,λ_s>O(s=m 1,…,n),而~qsσ(j,σ=1,…,n)为t之函数,当一切t≥t_o>O时連續有界;φ_j(1)(j=1,…n)为x_1,…,x_n之正則函数,其按x_1,…x_1的冪的展式不含低于2次之項并具实的常系数;φ_j(2)(j=1,…,n)为x_1,…x_n的正則函数,共按x_1,…x_n的冪的展式为:展式中系数R_j~(m_1,…m_n)为t之連續函数,当t≥t_o>O时有界,并使对于一切t≥to>O,函数φ_j(2)为x_1,…,x_n的一致正则函数。为了叙述簡便,今后将称具有φ_j(2)相同性质的函数为滿足条件(L)。  相似文献   

2.
§1.导言考虑微分方程组(1.1)dx_s/dt=X_s(t,x_1,…,_n) (s=1,…,n),我们总假定函数X_s在区域(1.2) t≥0,|x_s|≤H上连续,且对x_1,…,x_n具有连续一级偏微商,于是当然存在和唯一性定理可用;又假定X_s(t,0,…,0)=0,因而x_s=0是(1.1)的解.以x_s=F_s(t,x_1~0 ,…,x_n~0,t_o)代表方程粗(1.1)的适合起始条件  相似文献   

3.
本文在一定条件下将李雅普诺夫稳定性及不稳定性定理作了推广。对于非自治系统 (dx_s)/(dt)=X_s(t,x_1,…,x_n)(s=1,…,n)(2.1)若可以求得一个定正函数V(t,x_1,…x_n)而通过(2.1)计算得的全导数具有形式 (dV)/(dt)=λ(t)U(t,x_1,…,x_n)+(?)(t,x_1,…,x_n)其中 1°当t≥t_0时,积分integral from t_0 to t λ(t)dt为有上界M的函数。 2°U(t,x_1,…,x_n)为定正函数,且U≤V~k(K≥1为常数) 3°(?)是常负函数或铲(?)≡0则非自治系统(2.1)的零解为稳定。 此时,(dV)/(dt)可以是变号的也可以是常正的,系统(2.1)的零解仍是稳定的。进而得到了一个关于非自治系统(2.1)的零解为稳定和渐近稳定的充要条件。  相似文献   

4.
设x_1,x_2,…,x_n,… (1)是一个随机变量序列。定义1.(1)称为 f(n)-相关的,若当 s-1>f(n)时(x_1,x_2,…,x_)与(x_,x_(s+1),…,x_n)彼此独立。定义2.设 S_n=sum from i=1 to n x_i 是(1)的部分和。若存在固定的正数 H 和固定的ρ,0≤ρ≤1,  相似文献   

5.
本文对部分变元考察微分方程的零解的稳定性.建立四个关于部分变元的稳定性,渐近稳定性和全局渐近稳定性的定理.§1.基本定义考虑扰动运动微分方程组(?)x_i=X_i(t,x_1,…,x_n)(i=1,…,n)或写成向量形式(?)=X(t,x),X(t,0)≡0 (1)我们研究未被扰动运动x=0关于部分变元x_1,…,x_m(m>0,n=m p,p≥0)的稳定性问题.为简单起见,记y_i=x_i(i=1,…,m),z_j=x_(? j)(j=1,…,n-m=p),即x=(y_1,…,  相似文献   

6.
本文将许淞庆编著的《常微分方程稳定性理论》第68页命题3“如果对于扰动微分方程:(dx_s)/dt=x_(?)(t;x_1,x_2,…,x_n),(s=1,…,n)(1)存在着函数V(t;x_1,…,x_n),使得函数V—Q(t)W (θ(t_0)=1)是常正的,其中W=W(x_1,…,x_n)为定正函数,且θ(t)为t的单调增函数,并有Q(t)=∞,由方程(1)计得(dv)/(dt)为常负式恒为零,则未被扰动运动渐近稳定”加以推广,得到了一个更广泛条件下的结论——  相似文献   

7.
本文分有限组和可数组两部分敍述。Ⅰ.有限组解的稳定性这一部分利用O.Perron不等式的推广讨论方程组解的稳定性问题设方程组 dx_o/dt=a_o(t)x_o, dx_y/dt=a_v(t)x_v+∑b_vj(t)x_j+f_v(t,x_1,…,x_n),v=1,…,n,j=1 这里f_v(t,x_1,…,x_n)是t和x_v(t≥0.|x_v|<+∞)的函数,并且满足n |f_v(t,x_1,…,x_n)|≤gv(t)∑|x_j|,v=1,…,n,j=1  相似文献   

8.
本文是作者(1956)的一篇文章的继续,在陈述形式上与H.H.(1954)的一篇文章有类似之处.设给了微分方程组(1)(dx_i)/dt=X_i(x_1,x_2,…,x_n)(i=1,2,…n),就中X_i(x_1,…x_n)是定义在整个空间- ∞相似文献   

9.
定义了与函数相关的Vandermonde行列式,从而得到了多重积分∫_Eφ~(n)(∑_(i=0)~na_ix_i)dx_1dx_2…dx_n的一般计算公式,其中E={(x_1,x_2,…,x_n)|∑_(i=1)~na_ix_i≤1,x_i≥0,i=1,2,…,n},x_0=1-∑_(i=1)~nx_i,并给出了若干特例。  相似文献   

10.
本文的主要结果是下列定理,它是压缩映象原理和裴鹿成的定理的推广. 定理设f是把完备距离空间X的元素变为X的元素的连续变换,从x_0出发,取x_(n 1)=f(x_n),设序列{x_n}满足σ(Sk,N_(k 1))≤ασ(S_(k-1),N_k),k=1, 2,3……其中σ(n,m)=max σ[x_(n j),x_(n j 1)], o≤j相似文献   

11.
多维分布函数的不相关耦合   总被引:1,自引:1,他引:0  
设F(x_1,…,x_n),G(y_1,…,y_m)分别为n维与m维分布函数。若n+m维分布函数置(x_1,…,x_n,y_1,…,y_m)以F与G为边际分布,则称H为F与G的耦合。若H=FG,称H为独立耦合。若二阶矩存在,且对一切i,j,∫x_iy_jdH-∫y_jdG=0,称H为不相关耦合。本文给出了给定F与G时,存在它们的不相关又非独立的耦合的充要条件。  相似文献   

12.
设 F(x_1,…,x_n),G(y_1,…,y_m)分别为 n 维与 m 维分布函数。若 n m 维分布函数 H(x_1,…,x_n,y_1,…,y_m)以 F 与 G 为边际分布,则称 H 为 F 与 G 的耦合。若 H=FG,称 H 为独立耦合。若二阶矩存在,且对一切 i,j,∫x_iy_i dH-∫x_idF∫y_jdG= O=0,称 H 为不相关耦合。本文给出了给定 F 与 G 时,存在它们的不相关又非独立的耦合的充要条件。  相似文献   

13.
这里x=col.(x_1,x_2,…,x_n),A(t)是t的一致概周期(一致Π.Π.)n阶方阵,f(t)是t的一致Π.Π.n维列向量函数,‖x‖=sum from i=1 to n |x_i|,A(t)=(α_(ij)(t)),‖A(t)‖=sum from i+j=1 to n|α(ij)(t)|或欧氏模。 从文[1]知,对于周期线性系统情形:A(t+T)=A(t),f(t+T)=f(t),T>0,系统(1)有T-周  相似文献   

14.
§1.引言对微分方程组 dx_i/dt=P_(ij)(t)x_j+Ψ_1(t,x_1,x_2,……x_n)(1.1) 本文总假定函数P_(ij)(t)在区域t≥0上是连续有界的,并函数Ψ_1(t,x_1,……x_n)在区域; t≥0,-∞相似文献   

15.
<正> 本文R始终表示有单位元的交换环。我们考虑系数在R中的线性方程组AX=B (1)在R上可解的条件,这里A=(a_(ij))是一个m×n矩阵,X=(x_1,…,x_n)~t,B=(b_1,…,b_m)~t。如果m>n,可以引入变量x_(n+1),…,x_m及a_(ij)=0(1≤i≤m,n+1≤j≤m)。因此,不失一般性,我们总可以假定m≤n。关于线性方程组AX=B有解的充分条件,文献[1]、[2]、[3]中针对一些  相似文献   

16.
微分方程零解稳定性的充要条件   总被引:1,自引:0,他引:1  
本文讨论扰动矢量方程其中:x=(x_1,x_2……,x_n)为n维矢量,f(t,x)=(f_1(t,x),f_2(t,x),……。f_n(t,x))是定义在区域 t_0≤t< ∞,‖x‖≤H,(0~2)上的n维连续矢量函数,不失一般性,假定f(t,0)≡0,它们满足解的唯一性及对初始值的连续依赖性条件,并且假定解可以开拓到t= ∝。约定 x=x(t;x~0,t_0) 表示方程(0~1)满足初始条件x(t_0)=x~0的解。  相似文献   

17.
1.本文讨论如下 Stefan 问题.设 G 为(x_1,…,x_n)≡(x)(n==1,2,3)空间中一有界域,其边界 G 两次连续可微.此问题的古典式提法是这样:求有界函数,u(x,t),(x,t)∈Q= ×0≤t≤T,以及求域 G 的相应随时间 t 而演化(平滑地)的 p 1个(p≥0给定整数)相(子域)G_i(t)(i=1,…,p 1),G_i(t)∩G_i(t)=  相似文献   

18.
设x=(x_1,x_2,…,x_n)为R~n中有界区域G内的点,G的边界(?)G:x_i=x_i(S_1,…,S_(n-1)),i=1,…,n为光滑闭曲面,其外法线方向为(?),我们考虑泛函 J_n=integral from t_1 to t_2 integral from G(F(x,t,u,u_x,u_t)dxdt+integral from t_1 to t_2 integral from (?)G(f(s,t,u,u_s)dsdt (1)的局部极值问题,这里u=u(x,t),而u_x=(u_(x_1)…,u_(x_n)),u_s=(u_(s_1),…,u_(s_(n-1))),u~(s_j)=sum from i=1 to n ((?)u/(?)x_i(?)x_i/(?)s_j,j=1,…,n-1,又记区域V=(?)×[t_1,t_2],并设函数u(x,t)∈c~2(V),F和f分别在V和(?)G×[t_1,t_2]上二次连续可微。  相似文献   

19.
本文証明了下面的定理1,并应用置換群給出Karamata不等式,Muirhead不等式的一种新的証明。設x=(x_1,x_2,…,x_n)为n維空間中的点。G为集合{1,2,…,n}上的n元置換群。G的元素用ρ、σ、τ、等表示,ρ∈G,ρx=(x(ρ1),x_(ρ2),…x_(ρn),其中ρ_k=ρ(k)。记x的G軌道为Gx,Gx的凸包为H(Gx)。定理1.設φ_1、φ_2、…、φ_n、为R→R的連續、凸函数,如果  相似文献   

20.
主要研究高阶差分方程x_n+1=f(x_(n-s),x_(n-t)),n=0,1,2,…,s&gt;t,8,t∈{0,1,2,…)的全局渐近稳定性.当右端函数f满足某种单调性条件时,获得了其全局渐近稳定的一个充分条件.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号