共查询到20条相似文献,搜索用时 66 毫秒
1.
针对BP神经网络和遗传算法对果酒品质预测存在速度慢和精度低的缺点,建立了一种基于量子行为粒子群算法(QPSO)的最小二乘支持向量机(LS-SVM)的果酒品质预测模型。模型通过引入粒子的进化度和聚合度,动态调整收缩扩张因子,从而实现了算法的动态自适应性。仿真结果表明:基于自适应量子粒子群的LS-SVM果酒品质评价预测模型优于所比较的BP神经网络和最小二乘支持向量机两种模型,具有较好的泛化性能和预测精度。 相似文献
2.
基站是通信网络的重要能耗节点,精准计算合同能源管理(EPC)模式下基站节能量成为该领域的技术瓶颈.以3类典型场景通信基站为对象,提出了一种基于粒子群优化算法(PSO)的滚动时间窗最小二乘支持向量机(LSSVM)的基站能耗建模方法.该方法通过选取预处理的基站配置参数与实时数据建立滚动时间窗,采用PSO优化训练模型参数,并通过LSSVM回归估计训练模型,得到随时间窗数据变化的基站动态能耗模型.仿真试验与样本基站实测数据的验证结果表明,本文建立的能耗模型具有较高的预测精度及泛化能力,对基站节能工程的评估具有良好的应用前景. 相似文献
3.
PSO-LSSVM分类模型在岩性识别中的应用 总被引:1,自引:0,他引:1
为了精确解决测井岩性识别问题,提出了一种将粒子群优化算法(PSO)与最小二乘支持向量机(LSSVM)相结合对实际测井资料进行岩性识别的方法.首先使用粒子群优化算法对LSSVM建模过程中的重要参数进行优化调整,然后利用参数优化调整后得到的具有较优分类效果的PSO-LSSVM模型对某油田的测井资料进行岩性识别.实验结果表明:同基于交叉验证的支持向量机模型以及单隐层的BP神经网络模型相比,该方法能够很好描述测井数据和岩性类别之间的非线性映射关系,识别精度高,并提高了算法的自动化程度. 相似文献
4.
针对锅炉蒸汽产量预测的非线性和灰色性,提出将实时灰色最小二乘支持向量机模型应用于蒸汽预测,预测结果与实时 模型的预测结果进行对比,证明该模型具有更高的预测精度,可为蒸汽生产和调度提供决策依据。 相似文献
5.
6.
为分析深基坑在开挖过程中的变形规律,为安全生产提供有效信息,采用最小二乘支持向量机理论,利用粒子群算法对支持向量机的核参数进行优化,建立深基坑水平位移预测模型,并将预测结果与实际监测结果进行对比.研究结果表明:优化后的最小二乘支持向量机模型收敛速度快,泛化能力强,预测结果与实际监测数据有很好的一致性,精度高于传统的预测模型,对深基坑安全监控有一定的实用价值. 相似文献
7.
非线性模型在汽轮发电机组振动故障预测中的应用 总被引:5,自引:0,他引:5
针对故障状态下汽轮发电机组振幅的变化昱非线性的特性,文中建立了灰色系统理论与时间序列组合预测模型、基于分形拼贴定理及分形插值的预测模型以及基于最小二乘支持向量机的预测模型,并以某电厂200MW机组的日平均振动峰一峰值作为实测数据,对所建立的3种非线性预测模型分别进行拟合,进而对其预测性能进行分析及比较,得出了适合于汽轮发电机组的故障预测模型. 相似文献
8.
介绍了最小二乘支持向量机(LS-SVM)回归算法的基本原理,并使用MATLAB6.5结合LS-SVM工具箱对某型雷达磁控管状态监测数据进行了预测。 相似文献
9.
结合相空间重构理论,提出运用最小二乘支持向量机(LSSVM)建立混沌时间序列的预测模型,并用粒子群优化(PSO)解决LSSVM参数寻优的问题.通过与RBF神经网络构建的预测模型相比较,计算预测模型的均方根误差来评价模型的性能.结果表明:采用PSO优化的LSSVM预测模型的预测精度更高. 相似文献
10.
最小二乘支持向量机在人脸识别中的应用 总被引:4,自引:0,他引:4
支持向量机(SVM)模式识别方法具备良好的分类性能和鲁棒性,在介绍了典型支持向量机与最小二乘支持向量机(LS_SVM)原理的基础上,给出最小二乘支持向量机的算法实现过程,将其应用于人脸识别当中,取得较典型支持向量机在时间上较好的效果.在OPL人脸库中的实验结果表明,基于LS_SVM的人脸自动识别系统更能适用于实时性要求较高的场合. 相似文献
11.
基于最小二乘支持向量机对偶优化问题的核偏最小二乘 总被引:2,自引:0,他引:2
提出了一种基于对偶优化的核最小二乘(KPLS)方法,把KPLS用最小二乘支持向量机的形式表示.推导了KPLS对偶优化形式的公式,且使其具有最小二乘支持向量机的风格.在初始空间中构造优化问题,应用核技术在特征空间中解对偶问题,这种解与非线性的KPLS具有相似性.实验验证了这种方法的效果,表明了该方法的有效性和优越性. 相似文献
12.
13.
图像篡改最基础的手段便是拼接,为了恢复人们对数字图像的信任,图像拼接检测变得非常重要.论文提出一种基于最小二乘孪生支持向量机的图像拼接检测算法,算法对待测图像进行对偶数复小波变换以获取不同的子带图像,对子带图像提取其马尔科夫状态转移概率矩阵,将该概率矩阵作为拼接特征向量送入最小二乘孪生支持向量机训练以获取预测模型,最后根据该模型来判断待测图像是否经过拼接.在哥伦比亚大学无压缩图像拼接检测评估库和哥伦比亚大学图像拼接检测评估库上分别进行实验,与传统算法做对比,实验结果充分证明论文所提算法具有更高的拼接检测准确率. 相似文献
14.
针对锂电池剩余寿命预测的直接健康因子难以测量以及预测精度不高等问题,提出一种改进灰狼优化最小二乘支持向量机(improved gray wolf optimization least-squares support vector machine, IGWO-LSSVM)的锂电池剩余寿命间接预测方法。该方法从电池放电特性曲线中获取3种表征电池性能退化的间接健康因子,通过引入tent混沌映射、收敛因子非线性递减与莱维飞行策略对灰狼算法加以改进,并结合LS-SVM模型,形成了具有全局优化的改进灰狼优化最小二乘支持向量机的锂电池寿命预测模型。最后利用NASA数据集对文中提出的方法进行了验证,并将实验结果与GWO-LSSVM、PSO-ELM和BP神经网络算法进行了对比分析,试验结果表明文中所提出的改进算法具有更好的预测性能。 相似文献
15.
提出基于特征向量选择(feature vector selection,FVS)的稀疏最小二乘支持向量机(sparse least squares support vector machine,SLS-SVM)模型,解决最小二乘支持向量机(least squares support vector machine,LS-SVM)稀疏化问题。采用FVS在特征空间构建特征向量子集,对训练样本进行稀疏线性重构;将稀疏化的特征向量作为支持向量,从而实现对LS-SVM稀疏化建模。将SLS-SVM模型进行弓网系统的仿真对比实验,结果表明SLS-SVM模型在取得高预报精度的同时,可实现支持向量的高度稀疏化,从而加快模型预报速度。 相似文献
16.
城市交通流具有复杂性、时变性和随机性,实时准确的交通流量预测是实现智能交通诱导及控制的前提.综合分析交通流量影响因素的基础上,进行多路段的交通流量预测研究,提出了基于最小二乘支持向量机的交通流量预测改进模型,并应用平安大街的流量数据进行实例验证.结果表明,该模型具有学习速度快、跟踪性能好及泛化能力强等优点,在交通流预测中更具有实用性和推广性. 相似文献
17.
为了提高建筑空调负荷的预测精度,在分析空调负荷主要影响因素的基础上提出了一种基于自适应加权最小二乘支持向量机(AWLS-SVM)的建筑空调负荷预测方法。该方法根据预测误差的统计特性,采用基于改进正态分布加权规则,自适应地赋予每个建模样本不同的权值,以克服异常样本点对模型性能的影响。建模过程中采用粒子群优化(PSO)算法对模型参数进行优化,以进一步提高模型预测精度。基于DeST模拟数据将AWLS-SVM方法应用于南方地区某办公建筑的逐时空调负荷预测中,并与径向基神经网络(RBFNN)模型、LS-SVM模型及WLS-SVM模型作比较,其平均预测绝对误差分别降低了51.84%、13.95%和3.24%,并进一步基于实际空调负荷数据将该方法应用于另一办公建筑的逐日空调负荷预测中。预测结果表明:AWLS-SVM预测的累积负荷误差为4.56MW,亦优于其他3类模型,证明了AWLS-SVM具有较高的预测精度和较好的泛化能力,是建筑空调负荷预测的一种有效方法。 相似文献
18.
《东北师大学报(自然科学版)》2015,(3)
综合运用集合经验模态分解(EEMD)和最小二乘支持向量机(LS-SVM)建立了空中交通过点流量预测模型.EEMD的分解结果显示,高频本征模态函数(IMF)分量占有较大的方差贡献,而低频分量相对较小;对各IMF分量的预测结果表明,起始阶段的高频IMF分量具有较好的可预测性,距平相关系数(fACC)值相对较高,高频分量的预测效果随预测时段加长而逐渐下降,均方根误差逐渐加大,低频分量的ACC值在起始阶段相对较低,随预测时段加长而逐渐加大,整个预测时段可预测性较强;最终的合成预测流量曲线表明,基于上述的思想,算法在20h时段的流量预测效果较好,拥有较高的ACC值和相对较低的均方根误差,30h时段的同号率均较为理想. 相似文献
19.
数控机床热误差是降低加工精度的主要因素之一.针对热误差建模问题, 结合布谷鸟算法的随机莱维飞行机制和最小二乘支持向量机结构风险最小化与线性规划等优点, 提出基于布谷鸟算法优化最小二乘支持向量机的热误差建模方法.在最小二乘支持向量机将低维非线性问题转化为高维线性问题时, 构建了混合核函数.同时,采用布谷鸟算法对最小二乘支持向量机惩罚因子γ、核宽度参数σ和混合核权值λ进行了优化.以GMC2000A机床为实验对象, 分别对热误差数据进行了聚类分析和建模分析.通过误差预测对比分析得出结论, 基于布谷鸟算法优化混合核最小二乘支持向量机建立的误差模型取得了良好的预测效果, 且明显优于BP神经网络模型和未优化的最小二乘支持向量机模型的预测效果. 相似文献
20.
为了准确评价客户潜在信用风险,提出了偏最小二乘支持向量机组合评价模型.首先使用偏最小二乘能降低变量间的相关性,支持向量机可用于建立评估模型,然后采用相对误差频率分布作为新的指标评价模型,最后,与常见的评分模型在信用卡数据集上进行了对比.结果表明,PLS-SVM评价模型在有效性、稳定性以及准确性方面均有更好的表现. 相似文献