首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
An investigation on oxidation behavior of coated Ni-based single crystal superalloy in different surface orientations has been carried out at1100 ℃. It has been found that the {100} surface shows a better oxidation resistance than the {110} one, which is attributed that the {110}surface had a slightly higher oxidation rate when compared to the {100} surface. The experimental results also indicated that the anisotropic oxidation behavior took place even with a very small difference in the oxidation rates that was found between the two surfaces. The differences of the topologically close packed phase amount and its penetration depth between the two surfaces, including the ratio of α-Al2O3 after 500 h oxidation, were responsible for the oxidation anisotropy.  相似文献   

2.
A regular nanostructure has been widely confirmed to result ina marked improvement in material performance in biosensing applications.In the present study,a regular nanostructured Prussian blue(PB) film with two heterogeneous crystal layers was synthesized in-situ using a secondary growth method.A PB seed layer was first controlled to form uniform cube-like crystal nuclei through an ultrasonic reaction with a single reactant.Then,well-defined 100 nm PB nanocubes were further crystallized on this seed layer using a self-assembly approach.In order to accelerate the electron transfer rate during the enzyme reaction for glucose detection,the graphene was used as the main cross-linker to immobilize glucose oxidase on the PB film.The as-prepared biosensor exhibited high electrocatalysis and electron conductivity for the detection of trace glucose with a sensitivity of141.5 μA mM~(-1) cm~(-2),as well as excellent anti-interference ability in the presence of ascorbic acid and uric acid under a low operation potential of-0.05 V.  相似文献   

3.
The effect of hot isostatic pressing(HIP) treatment on microstructure of gas-turbine vanes made of K452 alloy was investigated by OM,SEM and TEM. The results showed that HIP treatment played a great role in the porosity healing processing, where 80% of porosities were eliminated and the diameter of remnant porosities decreased to 10 μm. The healing mechanism of the porosities was consistent with existing theories of porosity closure based on vacancy diffusion. According to the result of the tensile test, the plasticity of the alloy was improved as the result of the elimination of the porosities and the improvement of dendritic segregation, while there was not an obvious improvement in the tensile strength after the programmed HIP process. In addition, HIP had a positive effect on narrowing down the dispersion of tensile properties.  相似文献   

4.
The creep behavior and microstructure of a Ni3Al base single crystal alloy IC6SX with [001] orientation under the testing conditions of 760 ℃/593 MPa, 980 ℃/205 MPa, and 1100 ℃/75 MPa were investigated. The experimental results showed that Alloy IC6SX had good creep resistance and its creep resistance at elevated temperatures was similar to the second generation nickel-base single crystal alloy containing Re. TEM analysis indicated that the dislocation configuration and movement pattern were different under different temperature and stress conditions. It has been found that under the test condition of 1070 ℃/137 MPa the dislocations moved within the γ channel during the primary creep stage, and the motion of dislocations were prevented by the matrix of γ′ phase, which reduced the creep rate of the alloy. In the secondary creep stage, dislocations cut into the γ′ phase from the γ/γ′ interface. However in the third creep stage, the dislocation pileups were observed in both γ and γ′ phase, and dislocation multiplication occurred when the dislocations with different Burgers vector met and reacted each other.  相似文献   

5.
The creep behavior of the DZ125 superalloy at high temperatures has been investigated based on the creep properties measurement and microstructure observations. The experimental results show that, after full heat treatment, the fine and coarser cuboidal γ0precipitates distributed in the dendrite arm and inter-dendrite regions, respectively, the boundaries with various configurations located in the inter-dendrite regions. In the primary creep stage, the cuboidal γ0phase in the alloy transformed into the rafted structure along the direction vertical to the stress axis.The dislocations slipping and climbing over the rafted γ0phase are attributed the deformation mechanism of the alloy during steady-state creep.The(1/2)?1 1 0? dislocations slipping in the γ matrix and ?1 1 0? super-dislocations shearing into the γ0phase are the deformation mechanisms of the alloy in the latter stage of creep. And then the alternate slipping of dislocations results in the initiation and propagation of the micro-cracks along the boundaries until the occurrence of the creep fracture. Since the grain boundaries with various angles relative to the stress axis distribute in the different regions, the initiation and propagation of micro-cracks along the boundaries display the various features.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

6.
Single crystal Ni-based superalloys are the typical structural materials for high-pressure turbine blades, and their microstructure is critical in determining their mechanical properties. The withdrawal rate is a key parameter affecting the microstructure during the single crystal growth process. In the present work the effect of the withdrawal rate on the microstructure of a third-generation single crystal superalloy containing 6.8 ?wt% Re has been investigated, and the creep resistance of the alloy determined. The results showed that increased withdrawal rate refined the dendritic structure, reduced dendritic arm spacing, promoted the growth of secondary tertiary dendrites and decreased solidification segregation with a reduced size of γ′ phase. The porosity density of the as-cast alloy first decreased and then increased with the withdrawal rate, while the minimum porosity densityoccurred when the alloy was under the solidification condition of withdrawal rate of 4.5 ?mm/min. The maximum creep rupture life of 326.4 ?h of the heat-treated alloys under the test condition of 1100 ?°C/140 ?MPa also appeared at the alloys under the withdrawal rates of 4.5 ?mm/min. It is believed that the minimum porosity density and reduced size of the γ′ phase may be the main reasons for the enhanced creep rupture life of the alloys with withdrawal rates of 4.5 ?mm/min. This investigation provides theoretical support and a practical basis for the development of third-generation single crystal superalloys.  相似文献   

7.
LiNi0.5Mn1.5O4-δ which possesses a high voltage of 4.7 V vs.Li+/Li and stable structure has been considered as a promising cathode material for high energy Li-ion batteries.In this study,well-crystalli...  相似文献   

8.
Dissimilar joining of Ti3Al-based alloy to Ni-based superalloy has been carried out using gas tungsten arc(GTA) welding technology with Ti–Nb and Ti–Ni–Nb filler alloys.The joint welded with the Ti–Nb filler alloy contained much less interfacial brittle phases than the one using the Ti–Ni–Nb filler alloy.The average room-temperature tensile strength of the joint welded with Ti–Nb was 202 MPa and the strength value of the one welded with Ti–Ni–Nb was 128 MPa.For both fillers,the weak links of the dissimilar joints were the weld/In718 interfaces.The presence of TiNi,TiNi3 and Ni3Nb intermetallic compounds in the joint welded with Ti–Ni–Nb induced microcracks at the weld/In718 interface and deteriorated the mechanical properties of the joint.And the adoption of the Ti–Nb filler alloy decreased the formation tendency of interfacial brittle phases to some extent and thus enhanced the tensile strength of the joint.  相似文献   

9.
Dichloro-diglycine zinc II(DCDGZ II),a semi-organic nonlinear optical material has been synthesized and single crystals were grown from the aqueous solution up to dimensions 20×10×3 mm3.The title compound,DCDGZ II(C4H10Cl2N2O4Zn H2O) crystallizes into monoclinic structure with the space group of C2/c.The unit-cell parameters were found to be a=14.4191(7),b=6.9180(2),c=12.9452(6) and Z=4.In the crystal structure,DCDGZ II layer is building up alternatingly with layers of water in which the zinc ions lie on a twofold axis.Theoretical calculations for polarizability,which are useful for device fabrication were made using Clausius–Mosotti equation and Penn analysis and the results were compared.Fourier transform infrared(FTIR) spectroscopic studies were performed for the identification of the different functional groups presented in the compound.The UV–vis–NIR absorption spectrum reveals that the lower UV cut-off wavelength is 240 nm.The optical band gap of the crystal was estimated as 2.2 eV.The surface morphology,thermal behaviour,dielectric properties have been studied using SEM,TG/DTA and LCR HITESTER analyzer.The nonlinear optical property of the crystal was also confirmed using Kurtz powder technique.  相似文献   

10.
The present study demonstrates an effective low cost effective process for the production of porous titanium with 50-60 vol% porosity using 20 wt% rice husk(RH) with the hold spaces in the size ranges of 100-180,180-250,250-380,and 380-550 μm.The analysis of the samples revealed an interconnected pore microstructure consisting of a mixture of coarse channel pores,created during burnout of RH.The compressive strength of the developed samples was in the range of 17-70 MPa and depended strongly on their porosity and pore size.Large amounts of cleavage steps appeared on the brittle fracture surface after compression of the samples.The 3D morphology of porous titanium surface with rice husk sizes of 100-180μm and 380-550μm can be characterized by the micro-hole surface of pore size,and the size of the hole diameter and husk.The developed porous titanium is considered potentially useful in future medical or industrial application of biomass.  相似文献   

11.
Porous SiC ceramics with uniform microstructure were fabricated by quick freezing in liquid nitrogen and solid state sintering.Poly(vinyl alcohol)(PVA) was added as binder and pore morphology controller in this work.The microstructure and mechanical properties of porous SiC ceramics could be controlled by the composition of the aqueous slurries.Both solid content of the slurries and PVA content impacted on the pore structures and mechanical properties of the porous SiC ceramics.The solid content of slurries and PVA content varied from 60 to 67.5 wt%and 2-6 wt%,respectively.Besides,the grain morphology of ceramics was also tailored by changing the sintering temperature from 2050 to 2150 ℃.Porous SiC ceramics with an average porosity of 42.72%,flexural strength of 59.28 MPa were obtained at 2150 ℃ from 67.5 wt% slurries with 2 wt% PVA.  相似文献   

12.
Poly(vinylidene fluoride) (PVDF) composite membranes blended with nano-crystalline cellulose (NCC) for ultrafiltration were prepared by a Loeb-Sourirajan (L-S) phase inversion process.The effects of NC...  相似文献   

13.
Bionic titania coating carbon multi-layer material was fabricated by employing canna leaves as substrate and carbon precursor. Titania nanocrystals were assembled and coated on the natural films. The carbonation treatment under pure N_2 atmosphere yielded the ultrathin multi-film hybrid material. The carbon layer was coated with small anatase titania crystallite(8–10 nm) and possessed a highly specific surface area of 248.3 m~2 g~(-1). Examination using UV–visible spectrophotometer(UV–vis) showed that the band gap of the multi-layer material was reduced to 2.75 eV, and the hydrogen production by photocatalytic splitting of water under visible light irradiation was about 302 μmol g~(-1) after six hour.  相似文献   

14.
Nickel-based superalloy DZ125 was first sprayed with a NiCrAlY bond coat and followed with a nanostructured 2 mol% Gd_2O_3-4.5 mol% Y_2 O_3-ZrO_2(2 GdYSZ) topcoat using air plasma spraying(APS). Hot corrosion behavior of the as-sprayed thermal barrier coatings(TBCs) were investigated in the presence of 50 wt%Na_2SO_4 + 50 wt% V_2O_5 as the corrosive molten salt at 900 ℃ for 100 h. The analysis results indicate that Gd doped YVO_4 and m-ZrO_2 crystals were formed as corrosion products due to the reaction of the corrosive salts with stabilizers(Y_2O_3, Gd_2O_3) of zirconia. Cross-section morphology shows that a thin layer called TGO was formed at the bond coat/topcoat interface. After hot corrosion test, the proportion of m-ZrO_2 phase in nanostructured 2GdYSZ coating is lower than that of nano-YSZ coating. The result reveals that nanostructured 2GdYSZ coating exhibits a better hot corrosion resistance than nano-YSZ coating.  相似文献   

15.
The 3 mol% yttria stabilized tetragonal zirconia polycrystals (3Y-TZP) powder had three particle size distributions, while the fine one was lower than 100 nm. The 3Y-TZP compact was prepared by dry-pressing under pressures ranged from 10 to 30 MPa and then presintered at 1250°C for 2 h. The matrix dry-pressed under the pressure of 20 MPa had a porosity of 16.7% and could be easily processed by computer aided design and computer aided manufacturing (CAD/CAM), and which had been infiltrated by the La2O3–Al2O3–SiO2 glass at 1200°C for 4 h. The flexural strength and fracture toughness of the composite were 710.7 MPa and 6.51 MPa m1/2, respectively. The low shrinkage (0.3%) of the composite can satisfy the net-shape fabrication standard. XRD results illustrated that zirconia in the La2O3–Al2O3–SiO2 glass-infiltrated 3Y-TZP all-ceramic composite was mainly in the tetragonal phase. SEM and EDS results indicated that the pores of the matrix were almost filled by the La2O3–Al2O3 –SiO2 glass  相似文献   

16.
Nickel-based single crystal superalloys oriented along the o0014 and o0114 lattice directions were produced by a bottom seeding technique in an attempt to understand the evolution mechanism of the dendrite grown along different orientations in the present study. The changes in primary dendrite arm spacing for single crystal with different orientations are also discussed. It was found that the dendrite morphologies of single crystal superalloy grown along o0114 were different from that of o0014. Firstly, the dendrites showed the irregular cruciforms and array in rows in a transverse section. Secondly, no typical primary dendrites were observed but the dendrite morphologies appeared like the letter ‘‘V’’ or ‘‘W’’ in a longitudinal section. The primary dendrite arms grew along the o0014 orientation from the bottom of the sample in the o0014 orientation. However, in the o0114 orientation, the single crystal developed by continuous side-branching along the [001] and [010] orientations. The primary dendrite arm spacing was as the function of the deviation angle f. It indicates that with the increase in the deviation angle f, the primary dendrite arm spacing first increased, and then decreased.  相似文献   

17.
The grain boundary plays an important role in the electrical behaviors of solid oxide electrolytes for solid state fuel cells. To reveal the relationship between the structure and the ionic conductivity of grain boundary,the conductive properties of {1 1 1} and {1 1 0} twist grain boundaries in 8 mol% yttria-stabilized zirconia have been examined. These boundaries have a series of Σ values defined by the coincident site lattice model. It has been found that the activation energy of {1 1 1} twist grain boundary increases and then decreases with the Σ value,while that of the {1 1 0} boundary shows an opposite trend. It is suggested that the properties can reflect the balance of the effects of lattice mismatch on the diffusion ability of oxygen vacancies and the segregation of oxygen vacancies and Y3 tions. Therefore,the properties in polycrystalline electrolyte can be adjusted by controlling the grain boundary structures.  相似文献   

18.
Graphite nanosheets (GNS) were prepared by surfactant assisted ultrasonication from expanded graphite (EG) and followed by coating onto vinylon fabrics with water-borne polyurethane (WPU). The morphology of GNS and GNS/polyurethane (PU) coatings was characterized by field emission scanning electron microscope (FESEM), and the structure of GNS was studied by fourier transform infrared (FTIR) spectroscopy. Electromagnetic (EM) parameters indicated that GNS is a kind of dielectric loss material, in which little magnetic loss is found. Reflection loss (RL) results showed that both GNS content and coated thickness had great influences on the microwave absorption. For the fabric coated with GNS/PU nanocomposites (30/100 by weight, wet thickness of 0.39 mm for dry areal density in 130 g/m2), RL values exceeding 5 dB could be obtained in the frequency range of 10.7–18 GHz, while 10 dB in 12.7–18 GHz, and a minimum value of 28 dB at 15.2 GHz. These GNS/PU coated fabrics are light and flexible with much thin and low-cost coated layer, and showed great potential in radar camouflaging and electromagnetic interference application.  相似文献   

19.
Four activated carbon(AC) samples prepared from rice husk under different activation temperatures have been characterized by N2adsorption–desorption isotherms, thermogravimetric analysis(TGA–DTA), Fourier transform infrared spectroscopy(FTIR) and scanning electron microscopy(SEM). The specific surface area of AC sample reached 2681 m2 g 1under activation temperature of 800 1C. The AC samples were then tested as electrode material; the specific capacitance of the as-prepared activated carbon electrode was found to be 172.3 F g 1using cyclic voltammetry at a scan rate of 5 mV s 1and 198.4 F g 1at current density 1000 mA g 1in the charge/discharge mode.& 2014 Chinese Materials Research Society. Production and hosting by Elsevier B.V. All rights reserved.  相似文献   

20.
The corrosion activity of amorphous plates of Ca_(60)Mg_(15)Zn_(25)alloy was investigated.The biocompatible elements were selected for the alloy composition.The electrochemical corrosion and immersion tests were carried out in a multi-electrolyte fluid and Ringer's solution.Better corrosion behavior was observed for the samples tested in a multi-electrolyte fluid despite the active dissolution of Ca and Mg in Ringer's solution.The experimental results indicated that reducing concentration of NaCl from 8.6 g/dm~3for Ringer's solution to 5.75 g/dm~3caused the decrease of the corrosion rate.The volume of the hydrogen evolved after 480 min in Ringer's solution(40.1 ml/cm~2)was higher in comparison with that obtained in a multi-electrolyte fluid(24.4 ml/cm~2).The values of opencircuit potential(E_(OCP))for the Ca_(60)Mg_(15)Zn_(25)glass after 1 h incubation in Ringer's solution and a multielectrolyte fluid were determined to be-1553 and-1536 m V vs.a saturated calomel electrode(SCE).The electrochemical measurements indicated a shift of the corrosion current density(j_(corr))from 1062μA/cm~2for the sample tested in Ringer's solution to 788μA/cm~2for the specimen immersed in a multi-electrolyte fluid.The corrosion products analysis was conducted by using the X-ray photoelectron spectroscopy(XPS).The corrosion products were identified to be CaCO_3,Mg(OH)_2,CaO,MgO and Zn O.The mechanism of corrosion process was proposed and described based on the microscopic observations.The X-ray diffraction and Fourier transform infrared spectroscopy(FTIR)also indicated that Ca(OH)_2,CaCO_3,Zn(OH)_2and Ca(Zn(OH)_3)_2·2H_2O mainly formed on the surface of the studied alloy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号