首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
制备添加Al2O3的(1-y)Ce0.8La0.2O1.9+yAl2O3(y=0、0.005、0.01、0.02、0.03、0.05、0.07、0.1)电解质材料. 考察Al2O3的添加对La3+单掺杂CeO2电解质材料烧结性能、热膨胀、离子电导率和抗弯强度的影响. 结果表明:Al2O3能促进Ce0.8La0.2O1.9的烧结;当Al2O3的摩尔分数大于0.02时,出现了第二相LaAlO3;Al2O3的添加能提高Ce0.8La0.2O1.9的离子电导率,当Al2O3的摩尔分数为0.005时,试样的离子电导率达到最大值;Al2O3的添加能有效提高Ce0.8La0.2O1.9的抗弯强度,抗弯强度随着Al2O3添加量的增加而增大;所有试样的热膨胀系数为(12.28~12.55)×10-6K-1.  相似文献   

2.
机械活化放电等离子烧结制备Ce_(0.8)Sm_(0.2)O_(1.9)固溶体   总被引:1,自引:1,他引:0  
采用机械球磨方法制备(CeO2)0.8(SmO1.5)0.2纳米粉,并探讨了其适宜的工艺条件.分别用常规烧结和放电等离子烧结对所获纳米粉进行烧制,获得Ce0.8Sm0.2O1.9复合氧化物陶瓷,比较了两种烧结方法对材料结构与性能的影响.通过X射线衍射(XRD)、扫描电镜(SEM)等手段对氧化物进行了结构表征,交流阻抗谱测试了其电性能.结果表明:两种烧结方法所得样品均呈现单一的立方萤石结构;机械活化(CeO2)0.8(SmO1.5)0.2纳米粉于900℃时放电等离子烧结10min即可获得致密度90%以上的烧结体;放电等离子烧结材料的电导率高于常规烧结材料.  相似文献   

3.
采用固相反应法合成并在不同温度下烧结Ce0.85Y0.15-xCoxO2-δ(x=0、0.01、0.03和0.05)固体电解质材料,着重研究Co掺杂量对试样的体积密度和离子电导率的影响.采用X射线衍射(XRD)分析烧结后试样的晶体结构,Archimedes法测定烧结试样密度,电化学阻抗谱测量试样的离子电导率.结果表明:试样Ce0.85Y0.15-xCoxO2-δ(x=0、0.01、0.03和0.05)1 400℃烧结后均呈单一的立方萤石结构相,掺杂Co可以有效提高试样的体积密度,促进试样烧结.此外,一定量的Co还可以增加试样的离子电导率,相同烧结条件下试样Ce0.85Y0.14Co0.01O2-δ呈现出最高的离子电导率,1 450℃烧结,其离子电导率在800℃时达到0.083 1 s/cm.  相似文献   

4.
采用溶胶-凝胶法制备固体电解质Ce0.8Pr0.2-xSmxO2-δ(x=0.02,0.05,0.10).XRD结果表明:800℃煅烧后的全部样品皆为单一的立方萤石型结构,平均晶粒尺寸为19~28 nm;Raman光谱结果表明:立方萤石结构的Ce0.8 Pr0.2-x Smx O2-δ 固溶体中存在氧空位,在Ce0.8 Pr0.2-x Smx O2-δ 中掺入钐可提高氧空位浓度;阻抗谱测试表明:稀土双掺杂Ce0.8 Pr0.15 Sm0.05 O2-δ 的电导率高于单一稀土掺杂Ce0.83 Sm0.17 O2-δ 的电导率,且Ce0.8 Pr0.15 Sm0.05 O2-δ的电导率最大,σ600℃为1.2×10-2 S/cm,这归因于样品Ce0.8Pr0.15Sm0.05O2-δ 中较高的氧空位浓度和小极化子的跃迁.  相似文献   

5.
采用柠檬酸硝酸盐法合成出钐掺杂的氧化铈电解质Ce0 8Sm0 2O19(SDC)粉体,XRD结果显示该粉体为单相萤石结构.将粉体干压成型,在1400℃下烧结10 h可得到高致密度电解质.通过烧结实验,分析样品的烧结温度和密度,并测量其热膨胀曲线.以Ce08Sm02O19作为电解质组成单电池,在850℃其最大输出功率密度...  相似文献   

6.
夏红伟  胡学飞 《科技信息》2011,(1):33-34,413
固体氧化物燃料电池(SOFC)具有稳定性高、寿命长、污染低等优点,是二十一世纪的绿色能源之一。当前SOFC阴极通常采用掺杂的ABO3钙钛矿型材料。这类材料在高温下具有较高的导电率和催化活性,但中温化是SOFC的趋势,高温下常用的La(Sr)MnO3阴极材料在中温下性能下降,不能满足中温下电导率的要求。本论文尝试采用柠檬酸燃烧法来制备YBa2Cu3O7-δ,并在YBCO中加入一定量的Sm2O3掺杂的Ce2O3(SDC)作为SOFC的阴极材料,通过对阻抗分析,研究了SDC掺杂量、烧结温度等对该阴极材料性能的影响。实验结果表明:随着SDC的掺杂量x(0≤x≤50%)和烧结温度的升高,阴极材料的界面阻抗减小。在SDC的掺杂量为50%时,且在800℃下烧结得到的烧结体界面阻抗最小,其界面比电阻仅为0.1353ohm/cm2(800℃),这标志着掺杂SDC的YBCO作为中温固体氧化物燃料电池的阴极材料时非常具有发展前景的。  相似文献   

7.
针对Zr_(0.8)Sn_(0.2)TiO_4微波介质陶瓷烧结温度高和介质损耗大等问题,以ZnO、NiO、La_2O_3和Nb_2O_5为添加剂,在同一试验条件下,制备了复合方式不同的Zr_(0.8)Sn_(0.2)TiO_4,并对其物相组成、烧结行为、微观形貌和微波介电性能等进行了研究。研究结果表明:当添加w(ZnO)=1%,w(NiO)=0.2%,w(Nb_2O_5)=1%并经1 350℃烧结3 h,可获得微波介电性能优异的Zr_(0.8)Sn_(0.2)TiO_4陶瓷(相对介电常数ε_r=38,品质因数Qf=45 898 GHz,谐振频率温度系数τ_f=-2.2×10~(-6)℃~(-1)),此时其相对密度为98.6%。与无添加剂的Zr_(0.8)Sn_(0.2)TiO_4相比,烧结温度明显降低,Qf值得到显著提升。ZnO与NiO可以降低Zr_(0.8)Sn_(0.2)TiO_4的烧结温度,NiO和Nb_2O_5可以增大Qf值。  相似文献   

8.
采用溶胶-凝胶法制备了AlO1.5掺杂浓度为0.5%,1.0%,2.0%的AlO1.5/Ce0.8Gd0.15Y0.05O2-δ固体电解质材料,利用X射线衍射(XRD)、扫描电子显微镜(SEM)和交流阻抗谱研究了Al2O3掺杂对Ce0.8Gd0.15Y0.05O2-δ微观结构及电性能的影响,结果表明:800℃焙烧的所有粉末样品均为单相立方萤石结构,在所有样品中,AlO1.5掺杂量为0.5%的样品晶粒均匀,较致密,交流阻抗谱测试表明掺杂AlO1.5(x=0.5%)使Ce0.8Gd0.15Y0.05O2-δ晶界电阻减小,晶界电导率增高;当AlO1.5掺杂量x≥1%时,Al2O3对晶界的阻塞作用使晶界电导率降低,在所有样品中Ce0.8Gd0.15Y0.05O2-δ/0.5%AlO1.5晶界电导率最高(σ700℃=8.12×10-3S/cm),说明在Ce0.8Gd0.15Y0.05O2-δ少量掺杂AlO1.5(x=0.5%)具有烧结助剂和晶界清除剂的作用.  相似文献   

9.
采用自燃烧法制备La1.6Sr0.4NiO4+δ(LSN)阴极材料与Ce0.8Sm0.2O1.9(SDC)电解质材料,再用固相混合法将2种材料按不同质量比混合制备La1.6Sr0.4NiO4+δ-Ce0.8Sm0.2O1.9(LSNSDC)复合阴极材料.考察SDC含量对LSNSDC的电导率和电化学性能的影响,并确定最佳的SDC含量.结果表明:LSNSDC电导率的最大值随着SDC含量的增加向高温段移动.复合阴极经1050℃煅烧4h后,可与SDC电解质形成较好的接触界面,表现出最低的极化电阻(Rp).当SDC质量分数为30%(LSN30SDC)时,复合阴极的Rp与过电位(η)都达到最小值.800℃时,LSN30SDC复合阴极的Rp为0.238Ω·cm2,约为LSN的25%;当电流密度为300mA/cm2时,LSN30SDC复合阴极的η约为67mV,是LSN的70%. LSN30SDC复合阴极的极化电阻随着循环次数的增加而增加.  相似文献   

10.
研究SrCO3掺杂对Ba4(Sm0.2Nd0.8)9.33Ti18O54(BSNT)材料相组成、微观结构和介电性能的影响。采用X线衍射仪(XRD)和扫描电子显微镜(SEM)表征BSNT掺杂SrCO3后陶瓷的相组成和微观结构。结果表明:SrCO3掺杂量低于4%时,SrCO3与BSNT陶瓷共熔而不产生第二相。同时发现随着SrCO3掺杂量的增加,介电常数εr和谐振频率温度系数τf近似线性增加。在BSNT陶瓷中掺杂SrCO3可以得到τf近乎于0。掺杂4%的SrCO3在1 360℃下烧结3 h,可得到介电性能最佳的BSNT陶瓷(εr=83.4,Qf=8.47 THz(4.67 GHz),τf=-2.1×10-6℃-1)。  相似文献   

11.
为研究复合材料氧离子导电体的导电特性,采用化学共沉淀法制备Ce0.8Sm0.2O1.9-La0.9Sr0.1Ga0.8Mg0.2O2.85纳米复合粉体,并获得复合陶瓷材料.通过X线衍射仪和扫描电子显微镜对复合材料的物相组成与微观结构进行分析,利用交流阻抗测试研究材料的离子导电性.研究结果表明:煅烧复合粉体的平均晶粒尺寸为15 nm;复合材料的导电性均明显高于复合组元的单相材料的导电性;La0.9Sr0.1Ga0.8Mg0.2O2.85中La2O3过量3%(质量分数)的复合材料体现最好的导电性,在700℃时的导电率为0.106 S/cm.通过交流阻抗谱分析晶粒、晶界特性,探讨复合电解质材料的导电机理.  相似文献   

12.
采用以Ce(NO3)3,Sm(NO3)3和(NH4)2CO3为反应物,聚乙二醇(PEG)为分散剂的改性共沉淀法合成了Ce0.8Sm0.2O1.9纳米晶.在PEG存在条件下,从Ce(NO3)3,Sm(NO3)3和(NH4)2CO3的混合溶液中生成了Ce2(CO3)3和Sm2(CO3)3的共沉淀纳米线.实验结果显示,采用该方法得到的共沉淀团聚很少,且随着聚乙二醇添加量的增加,纳米线的线径减小.将纳米线在很低的温度(约300℃)下焙烧基本形成了Ce0.8Sm0.2O1.9纳米晶,比通常的共沉淀法的焙烧温度(约500℃)降低了约200℃.  相似文献   

13.
微波电路的小型化、集成化和高可靠性对微波陶瓷提出了特殊的要求.作者在(Zr0.8Sn0.2)TiO4主相系统中,单一添加ZnO或复合添加ZnO MoO,考察了不同含量的上述改性添加剂对Zr0.8Sn0.2TiO4陶瓷显微结构和微波介电性能的影响.主相合成条件为1100℃下3h;粉碎、成型后样品在1240℃~1400℃下3h烧成.在1GHz下用谐振腔法测量了材料的介电常数和Qf值,并在1M下测量了频率温度系数τf.采用SEM对样品进行形貌观察及能谱分析,并进行了XRD表征.研究结果表明,单独添加少量的ZnO(1%)可以降低烧结温度,但Qf值较低,与复合添加样品的显微结构相比晶粒不均匀.复合添加MoO3(0.25%)和ZnO(1%)的(Zr0.8Sn0.2)TiO4陶瓷Qf值由49430GHz提高到61210GHz,同时介电常数εr和谐振频率温度系数τf基本保持不变.  相似文献   

14.
以金属硝酸盐为基本材料,通过共沉淀法、低温燃烧法和超声喷雾热解法分别制出了萤石型Ce0.8Sm0.2O2-α(SDC)陶瓷电解质超细粉体.以扫描电子显微镜、X射线衍射仪和氮气吸附仪等设备对制得的SDC陶瓷粉体进行结构和性能表征,并分别测试了这三种粉体的导电性能.结果表明,用低温燃烧法制备的SDC粉体粒径大约在50~100nm之间,大小均匀,比表面积为55.26m2/g,600℃时电导率为0.029S/cm,活化能较低,仅0.561eV;三种方法中低温燃烧法最适合制备电导率高和活化能低的SDC陶瓷电解质材料.  相似文献   

15.
采用甘氨酸-硝酸盐法(GNP)制备Pr_(0.6)Sr_(0.4)CoO_(3-δ)-xCe_(0.8)Sm_(0.2)O_(1.9)(PSC-xSDC,10%≤x≤40%)复合阴极材料,研究PSC-xSDC的电性能、电化学性能、热膨胀性能。结果表明:PSC、SDC之间的化学相容性良好。PSC-xSDC复合阴极材料的电导率在600~800℃中温范围内均远高于100 S/cm,PSC-xSDC中SDC最佳复合量为30%,1 000℃煅烧的PSC-30%SDC复合阴极材料与电解质接触良好,在750℃测得的界面极化电阻为0.054Ω·cm~2。PSC与SDC复合适当降低了阴极材料的热膨胀系数,PSC-30%SDC的热膨胀系数为16.77×10~(-6 ) K~(-1)。  相似文献   

16.
ZnO-MoO3 添加(Zr0.8Sn0.2)TiO4微波陶瓷的介电性能   总被引:3,自引:0,他引:3  
微波电路的小型化、集成化和高可靠性对微波陶瓷提出了特殊的要求,作者在(Zr0.8Sn0.2)TiO4主相系统中,单一添加ZnO或复合添加ZnO-MoO,考察了不同含量的上述改性添加剂对Zr0.8Sn0.2TiO4陶瓷显微结构和微波介电性能的影响,主相合成条件为1100℃下3h;粉碎、成型后样品在1240℃~1400℃下3h烧成,在1GHz下用谐振腔法测量了材料的介电常数和Qf值,并在1M下测量了频率温度系数τf,采用SEM对样品进行形貌观察及能谱分析,并进行了XRD表征、研究结果表明,单独添加少量的ZnO(1%)可以降低烧结温度,但Qf值较低,与复合添加样品的显微结构相比晶粒不均匀、复合添加MoO3(0.25%)和ZnO(1%)的(Zr0.8Sn0.2)TiO4陶瓷Qf值由49.430GHz提高到61 210GHz,同时介电常数ετ和谐振频率温度系数τf基本保持不变。  相似文献   

17.
采用固相反应法制备了ZnO、Sm2O3共掺杂Ba0.2Sn.8TiO3陶瓷样品,利用X射线衍射方法及介电谱测量方法对样品的结构和介电性能进行了测量分析,结果表明:(1)Zn2+与Sm3+进入Ba0.2Sr08TiO3晶格内,与之形成ABO3钙钛矿型固溶体;(2)介电常数弥散的P过程和弛豫的D过程随着Sm2O3含量的增大均被压低展宽,D的弛豫过程逐渐明显,在Sr2O3为0.06mol时为Debye型弛豫过程;(3) Sm2O3的掺入可降低B a0.2Sr0.8TiO3+ZnO陶瓷介电常数,增大损耗,Sm2O3为0.05mol时是样品的一个过渡组分.  相似文献   

18.
采用溶胶凝胶方法制备Sm掺杂CeO2粉体材料,用放电等离子烧结(SPS)方法和常规烧结方法(CS)进行压片烧制,比较两种烧结方法对材料结构与性能的影响.通过X-射线衍射(XRD)、场发射扫描电镜(FE-SEM)等手段对氧化物进行结构表征,交流阻抗谱测试电性能.结果表明,两种烧结方法所得样品均呈现单一的立方莹石结构;SPS烧结样品的晶粒尺寸和密度大于CS烧结样品,SPS烧结样品的晶粒电导率、晶界电导率及总电导率均高于CS烧结样品;550℃时SPS和CS烧结样品的总电导率分别为2.27 s/m和1.87 s/m.放电等离子烧结法是在较低温度下实现快速烧结,制备致密化固体电解质材料的一种有效方法.  相似文献   

19.
通过固相反应法合成La0.75Sr0.25Cr0.5Mn0.5O3-δ(LSCM)以及Ce0.8Sm0.2O1.9(SDC)粉体。采用X线衍射仪(XRD)、扫描电子显微镜(SEM)、电化学阻抗谱法、循环伏安法和热膨胀法分别对试样的晶体结构、化学相容性、微观结构、电化学性能和热膨胀系数进行了研究。结果表明:LSCM阳极与SDC之间具有良好的化学相容性;含有SDC中间层的LSCM阳极显示出更小的比表面电阻和极化过电位;在800℃H2气氛下,含有SDC中间层的LSCM阳极的比表面电阻为0.76Ω.cm2,与单层LSCM阳极相比下降了72.1%,阳极极化过电位(电流密度为0.05A/cm2)下降了70.4%;SDC中间层的加入会导致热膨胀不匹配率的略微增大。  相似文献   

20.
以Li2SO4和Ce0.9Ca0.1O1.9为原料,混合制成复合电解质.实验表明,Li2SO4Ce0.9Ca0.1O1.9复合电解质在中温区(500~650℃)具有较高的导电率,以此材料制成的燃料电池的开路电压可达1.0v左右,明显高于以Ce0.9Ca0.1O1.9为电解质的燃料电池的开路电压,在550℃左右具有10mW/cm2以上的最大输出功率密度,但在更高的温度下性能有所下降,且电极性能尚待改进.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号