共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
在Hilbert空间中,一个算子T有极分解T=UP,如果P-UPU=D≥0,那么T称为半亚正常算子。对半亚正常算子T=UP,我们证明了成立不等式 相似文献
3.
夏道行教授提出了一类非正常算子。T是复Hilbert空间H上的算子,有极分解T=UP,这里U是等距算子,称T是Ψ拟亚正常的,若其满足φ(P)-Uφ(P)U~*=D_φ≥0,这里φ是[0,∞]到[0,∞]上的严格单调上升的连续函数,称为标函数。特别当φ(t)=t时,称T是半亚正常算子。 相似文献
4.
1.设A是可析Hilbert空间H中的线性有界算子。记作A的如下的极分解其中U是以为定义域,为值域的等距算子。此后我们总是把U任意地延拓为H上的部分等距算子。当φ是上严格单调增加的连续函数而且 相似文献
5.
设是复可析Hilbert空间,是中线性有界(有界自共轭)算子全体.设X,Y∈,φ,分别为σ(X),σ(Y)上的有界Baire函数,作映照τ_φ,:X+iY→φ(X)+i(Y).它又表示复平面的子集上的映照τ_φ:x+iy→φ(x)+i(y),这儿x,y是实数.记HN={T|T∈,D(T)=[T~*,T]≥0}为亚正常算子、在第二届全国泛函分析学术交流会上夏提出了如下的问题: 相似文献
6.
对亚正常算子T,如果存在多项式P(·),使σ(P(T))={0}.那么必有P(T)=0.一般证明是由于这时σ(T)只有有限个点,从而由Putnam不等式可知T必为正常,从而P(T)也正常,这样由σ(P(T))={0}立即导出P(T)=0.对交换的亚正常算子组T=(T_1,…,T.),若存在多项式P(·,…,·)使P(T_1,….T_n)满足σ(P(T))={0}时,上 相似文献
7.
次正常算子的拟相似算子本质谱 总被引:1,自引:0,他引:1
1988年杨立明证明了,若S是次正常算子,和T是亚正常算子,T与S拟相似,则σ_e(s)(?)σ_e(T),由此得出两个拟相似的次正常算子本质谱相同。这是算子拟相似理论中的一个重要成果。本文改进文献[1]的方法,证明了,若S或S~*是次正常算子,T是任一个有界线性算子,T与S拟相似,则σ_e(S)(?)σ_e(T)。 相似文献
8.
让X、Y为复Banach空间。张量积X_αY是XY关于拟一致合理范数α的完备化。Brown和Percy证明了σ(A(?)B)=σ(A)·σ(B)。Schecter和Dash把这个工作推广到多个有界算子的情形。而Harte对一般Banach代数的张量积进行了讨论。设A、B分别是X、Y上的稠定闭算子。Ichinose详细讨论了的谱及各种意义下的本质谱。并且给出了P的nullit、deficiency和index的表达式。在此同时,Fialkow对算子 相似文献
9.
10.
设H为复Hilbert空间,B(H)为H上有界线性算子全体,A_1,…,A_k,C,P∈B(H),其中P≥0。本文主要讨论算子不等式以及与算子线性组合之间的联系。我们证明了 相似文献
11.
复Hilbdrt空间H上的线性有界算子T称为拟亚正常的,如果存在[0, ∞)上的严格单调上升的连续函数φ(t),φ(0)=0(标函数),使得φ(T*T)-φ(TT*)=D_φ≥0;若对任何标函数φ(t),都有D_φ≥0,称T是完全亚正常的。如果[T~* T,T*T]=0([A,B]=AB-BA),称T是θ类算子; 相似文献
12.
§1.Landau提出的关于可微函数的各阶导函数的一致范数间的精确不等式的著名问题,以及Kolmogorov对该问题的深刻研究是熟知的。他们的工作有一系列沿不同方向的拓广(参看Schoenberg,Cavaretta,Sharma与Tzimbalario,黄达人与王建忠)。 本文给出任意常(实)系数线性常微分算子的Landau-Kolmogorov型不等式。 相似文献
13.
设x为Banach空间,T(t)是x上的(O,A)类半群,A为T(t)的无穷小母元.设{2kπi}_(k∈Zρ(A),对每个k∈Z,我们定义算子Q_k如下: 相似文献
14.
关于具中心球空穴介质的迁移算子的谱的性质 总被引:1,自引:0,他引:1
考虑有界凸的封闭曲面Γ_v 所围成的介质体 V,假设 V 被完全吸收介质所包围,那么介质体 V 与时间有关,散射和裂变是各向同性的单能中子迁移是由积-微分方程 相似文献
15.
关于含任意空穴的非均匀介质的迁移算子的谱 总被引:1,自引:0,他引:1
设V是具分段光滑边界Γ_V的有界的凸的介质,它被完全吸收介质所包围。在散射和裂变是各向同性的情况下,与时间有关的单能中子迁移可由方程 相似文献
16.
一、序言 设H是复的Hilbert空间,记J_p为不大于n的p个自然数组成的指标集,并赋予自然的顺序;是由n个不定元e_1,e_2,…,e_n生成的复的外代数。对于J_p={j_1,…,j_p}记。设a=(a_1,…,a_n)是H上稠定闭算子组,令D_(Jo)=H;对 相似文献
17.
拟相似算子谱的相交关系 总被引:1,自引:0,他引:1
X表示无穷维复Banach空间,L(X)表示X上线性有界算子全体。A∈L(X),B∈L(Y),A,B拟相似(记为AB)是指存在P:X→Y,Q:Y→X,P、Q线性有界、单射且稠值域,使PA=BP,QB=AQ。Hoover给出AB而σ(A)≠σ(B)的例且证明AB(σ(A)∩σ(B)≠Φ。Fialkow证明AB(σ_e(A)∩σ_e(B)≠Φ,σ_(re)(A)∩σ_(le)(B)≠Φ并提出问题:AB,则σ_e(A)(σ_(re)(A))的每一连通分支是否都与σ_e(B)(σ_(le)(B))相 相似文献
18.
本文继续作者们前两篇文章的工作,讨论具有SDP的闭算子的对偶定理,使问题得到了圆满的解决。设X为复Banach空间,T为定义在X中且在X中取值的稠定闭算子,记为T∈C_d(X)。定理1 设T∈C_d(X),则当T、T~*中之一具有SDP时,T与T~*均具有性质(β),即对任何开集G以及于G上解析的Y值函数序列{f_n(λ)},当 相似文献
19.
20.