首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nonnative brook trout ( Salvelinus fontinalis ) have been implicated in declines of stream-living Lahontan cutthroat trout ( Oncorhynchus clarki henshawi ), a threatened trout endemic to the Lahontan Basin of northeastern California, southeastern Oregon, and northern Nevada. Brook trout may displace Lahontan cutthroat trout through 2 mechanisms: interspecific predation and competition for food. To evaluate the evidence for these alternatives, we examined stomach contents of 30 trout of each species captured in the North Fork Humboldt River, northeastern Nevada, to compare number, size, and taxonomic composition of prey. Taxonomic dietary overlap was high (81.4%) between brook and Lahontan cutthroat trout. Both species were nonselective in their feeding habits. Lahontan cutthroat trout consumed over 2.5 times as many prey on average, but brook trout consumed significantly larger prey. No trout of either species occurred in fish diets. Only a single fish, a Paiute sculpin ( Cottus beldingi ), was found in stomachs, and the majority (>90%) of prey consisted of insect taxa. Size and number of prey consumed were positively related to fish size for Lahontan cutthroat trout, but not for brook trout. These results do not provide compelling evidence to suggest feeding by Lahontan cutthroat trout is limited by presence of large numbers of brook trout in the North Fork Humboldt River. However, fundamental differences in each species utilization of food in this system indicate that a better understanding of observed differences may help to explain the variable success of brook trout invasions across stream habitats in the Lahontan Basin and their potential effects on Lahontan cutthroat trout.  相似文献   

2.
Trichophrya sp. (Protozoa) on the gills of cutthroat trout ( Salmo clarki ) and longnose suckers ( Catostomus catostomus ) was studied using light and electron microscopy and tracer techniques. All cutthroat trout, 14 cm in total length and above, from Yellowstone Lake, Yellowstone National Park, Wyoming, were infested with the suctorian. No trichophryans were found on fry or fingerling cutthroat trout. Sixty percent of the examined longnose suckers from the same location were infested. Light microscopy disclosed extensive pathology of gill epithelium in longnose suckers infested with Trichophrya that was not observed for infested cutthroat trout. Electron micrographs show damage to immediate host gill cells by both parasites, depicted by a reduction and lack of mitochondria. Both parasites form attachment helices (0.52 × 0.04 μ m), which may originate in the protozoan cell membrane and function for maintenance of parasite position on the host cell. There was no uptake of 14 C, injected into host fish, via the attachment helices by the parasite that further substantiated the mechanical function for the spiral structure. Protozoan feeding on host tissue may be accomplished by use of necrotic gill tissue and mucus.     相似文献   

3.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Twenty-five cutthroat trout ( Salmo clarki ) and eight longnose suckers ( Catostomus catostomus ) from Yellowstone Lake, Wyoming, were collected and examined for parasites in 1985. Cutthroat trout had at least six different species of parasites that included both protozoans and helminths. The greatest number of parasite species on one fish was nine. Parasites added to the known list for cutthroat trout from Yellowstone Lake, Wyoming, were: Myxosoma sp., Diphyllobothrium ditremum, Diphyllobothrium dendriticum, Diplostomum baeri, and Posthodiplostomum minimum. These data were compared with a previous survey (1971) and a checklist of parasites of cutthroat trout in North America. There are 17 species of parasites and two fungal species reported for cutthroat trout from Yellowstone Lake. Trichophrya catostomi, Diplostomum spathaceum, and Ligula sp. were observed in the small sample of longnose suckers.     相似文献   

4.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} The Pyramid Lake Lahontan cutthroat trout ( Salmo clarki henshawi ) population was sampled on a monthly basis from November 1975 through December 1977. A subsample of 676 trout, stratified by fish size and lake habitat, provided biological data. The entire population is presently derived from hatchery production, stocked at lengths of approximately 75 to 300 mm. Peak annulus formation occurs in March and April, followed by the period of maximum growth. Scale patterns illustrate a variable growing season. Maximum growth in length is in the first three years of life; after that males begin to grow faster than females. Males attained a greater age in our sample; i.e., the oldest male was seven years old compared to six years for females. The Pyramid Lake Lahontan cutthroat trout exhibit nearly isometric growth. The legal sport fishery removed 380 mm); other decimating factors are poorly understood. No evidence of the following diseases or pathogens was found in the Pyramid Lake population, presuming a carrier incidence of 2 percent at the 95 percent confidence level: infectious pancreatic necrosis, infectious hematopoietic necrosis, viral hemorrhagic septicema, bacterial kidney disease, enteric redmouth, furunculosis, whirling disease, blood fluke; however, 7 of 235 (≈3 percent) adults sampled at the Marble Bluff fishway were positive for furunculosis. Small trout feed primarily on zooplankton and benthic invertebrates; cutthroat trout >300 mm are piscivorous, feeding almost exclusively on tui chub ( Gila bicolor ). The spawning migration of Pyramid Lake cutthroat trout to the Marble Bluff egg taking facility in spring 1976 and 1977 peaked in April and May. Females mature at three or four years (352–484 mm), and males mature at two or three years (299–445 mm). Mean diameter of mature eggs is 4.51 mm; both ovum size and fecundity are a function of fish size. Fecundity ranges from 1241 to 7963 eggs, with a mean of 3815. Lahontan cutthroat trout comprise  相似文献   

5.
Thirty - nine Utah streams were sampled for cutthroat trout. Of these, 31 contain cutthroat or cutthroat / rainbow hybrid populations. By using starch gel electrophoresis, these populations were segregated into three groups. One group consisted predominately of fish from the Sevier River (of the Bonneville Basin) and Colorado drainages. A second was primarily populations from the Bear River Drainage (Bonneville Basin) as well as some scattered populations along the Wasatch Front (Bonneville Basin). The third consisted of Wasatch Front populations and populations that have hybridized with rainbow trout. Since different subspecies of cutthroat trout are native to the Colorado and Bonneville drainages, one would expect the populations from within the Bonneville Basin to be more similar to one another and less similar to the Colorado River populations. That this did not occur raises questions concerning the evolutionary relationships of the subspecies and the populations. It is clear that at least a northern (Bear River) and southern (Sevier River) form of the Bonneville cutthroat exists. The Wasatch Front may represent an intermediate zone where these two forms intergrade.      相似文献   

6.
The spawning of Lahontan cutthroat trout ( Oncorhynchus clarki henshawi ) in Summit Lake, Nevada, has reportedly declined since the early 1970s, coincident with the appearance of Lahontan redside shiner ( Richardsonius egregius ) in the lake. We investigated the relative predatory abilities of the 2 fish species foraging on live Daphnia magna in turbidity conditions commonly observed in Summit Lake. Experiments were performed under controlled light and temperature condition. In separate trials we fed trout and shiner 1 of 3 size classes of D. magna (1.7 mm, 2.2 mm, and 3.0 mm) at 6 levels of turbidity ranging from 3.5 to 25 NTU. Feeding rates for both species varied inversely with turbidity for all prey sizes. Feeding rates of shiner were greater than trout at all turbidity levels. In low turbidity (5 TNU), shiner consumed approximately 3% more prey during 2-h feeding trials. However, at high turbidity levels, the difference in feeding rates between species was proportionally higher (10%). At high turbidity levels (≥ 20 NTU) trout predation rates were relative insensitive to prey size. However, shiner continued to consume more, larger prey at the highest turbidity levels. These results indicate that Lahontan redside shiner may be superior to Lahontan cutthroat trout as zooplankton predators at high turbidity levels, and may explain the recent success of shiner in Summit Lake.  相似文献   

7.
Normal 0 false false false EN-US X-NONE X-NONE MicrosoftInternetExplorer4 st1\:*{behavior:url(#ieooui) } /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-qformat:yes; mso-style-parent:""; mso-padding-alt:0in 5.4pt 0in 5.4pt; mso-para-margin:0in; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-fareast-font-family:"Times New Roman"; mso-fareast-theme-font:minor-fareast; mso-hansi-font-family:Calibri; mso-hansi-theme-font:minor-latin; mso-bidi-font-family:"Times New Roman"; mso-bidi-theme-font:minor-bidi;} Three fishes, two species of Gila, and an undescribed subspecies of cutthroat trout, are endemic to the Alvord Basin. Historically, the Alvord cutthroat trout, Salmo clarki ssp., inhabited the larger creeks of the basin but has been extirpated in pure form because of introgression with introduced rainbow trout, Salmo gairdneri. Gila boraxobius is restricted to the thermal waters of Borax Lake and its outflows in the northern part of the basin. This species is endangered because of alteration of its fragile habitat. The Alvord chub, G. alvordensis, is recorded from 16 localities throughout the basin, including springs, creeks, and reservoirs. Although G. alvordensis as a species is not in jeopardy, many populations are small and could be easily eliminated by habitat destruction or by the introduction of exotic fishes. Competition with exotic guppies, Poecilia reticulata, has extirpated the Thousand Creek Spring population of Alvord chubs. Both species of Gila are opportunistic omnivores, consuming primarily chironomids, microcrustaceans, and diatoms. The Borax Lake chub also consumed large numbers of terrestrial insects, but specialized feeding on molluscs was noted in the West Spring population of Alvord chubs. Borax Lake chubs spawn throughout the year; however, most spawning occurs in early spring. Borax Lake chubs mature at a small size, occasionally less than 30 mm standard length, and seldom live more than one year. Alvord chubs are typically much larger than the Borax Lake species and live at least into their fifth year.  相似文献   

8.
Insectivorous fishes were sampled from March, 1983 to February 1984, in Flint Creek, Delaware Co., Oklahoma. There was insignificant habitat segregation between Etheostoma spectabile and E. punctulatum and seasonal habitat partitioning between Cottus carolinae and both darters. Mature E. spectabile ate primarily chironomids and mayflies, whereas juveniles fed primarily on microcrustaceans. Mature E. punctulatum consumed fewer Ephemerella and Leptophlebia than E. spectabile , feeding on Stenonema and other crustaceans. Juvenile E. punctulatum fed mainly on amphipods and mayflies, and juvenile E. spectabile ate primarily microcrustaceans. Cottus carolinae elected primarily mayflies in spring - summer and chironomids in January - February. Coefficients of dietary overlap were highest between larger E. spectabile and juvenile E. punctulatum and lowest between immature E. spectabile and mature E. punctulatum . Overlap between the two darters was significantly correlated with differences in mean prey size (p E. spectabile was also significantly correlated to differences in mean prey sizes. Etheostoma spectabile generally preferred smaller prey than E. punctulatum . All three species avoided Stenelmis . Cottus carolinae avoided microcrustaceans. The study showed that resource partitioning among these three insectivorous fishes is affected by complex interactions of habitat and prey electivity, and prey size selectivity.      相似文献   

9.
We compared the maximum scotopic visual sensitivity of 4 species of trout from twilight (mesotopic) to fully dark-adapted vision. Scotopic vision is the minimum number of photons to which a fully dark-adapted animal will show a behavioral response. A comparison of visual sensitivity under controlled laboratory conditions showed that brown trout ( Salmo trutta ) and brook trout ( Salvelinus fontinalis ) had maximum scotopic thresholds (1.1 × 10 –4 μmol ? m –2 s –1 , ~0.005 lux) 2 times lower than rainbow trout ( Oncorhyncus mykiss ) and Snake River cutthroat trout ( Oncorhynchus clarki bouvieri ), which did not differ from each other (2.1 × 10 –4 μmol ? m –2 s –1 , ~0.01 lux). A literature review tended to corroborate these results in that brown trout and brook trout were reported to be more active during the night and at twilight than cutthroat trout and rainbow trout. We also measured light intensity within open versus shaded reaches during the day, dusk, and night in 3 Rocky Mountain streams. The scotopic sensitivity of brown trout and brook trout was sufficient to allow foraging during all twilight periods and under average nighttime light intensities in open and shaded reaches, whereas the scotopic sensitivity of rainbow trout and cutthroat trout may restrict their foraging to relatively bright nocturnal conditions (twilight or a moonlit night). Native cutthroat trout restoration efforts may have greater success in open versus shaded stream reaches in the Rocky Mountains and elsewhere.  相似文献   

10.
We evaluated the effects of various density treatments on adult fish growth and emigration rates between Bonneville cutthroat trout Oncorhynchus clarki utah and brook trout Salvelinus fontinalis in stream enclosures in Beaver Creek, Idaho. We used 3 density treatments (low, ambient, and high fish densities) to evaluate density-related effects and to ensure a response. Intraspecific ambient-density tests using cutthroat trout only were also performed. Results indicated an absence of cage effects in the stream enclosures and no differences in fish growth between ambient-density stream-enclosure fish and free-range fish. Brook trout outgrew and moved less than cutthroat trout in the stream enclosures, especially as density increased. In all 3 density treatments, brook trout gained more weight than cutthroat trout, with brook trout gaining weight in each density treatment and cutthroat trout losing weight at the highest density. At high densities, cutthroat trout attempted to emigrate more frequently than brook trout in sympatry and allopatry. We observed a negative correlation between growth and emigration for interspecific cutthroat trout, indicating a possible competitive response due to the presence of brook trout. We observed similar responses for weight and emigration in trials of allopatric cutthroat trout, indicating strong intraspecific effects as density increased. While cutthroat trout showed a response to experimental manipulation with brook trout at different densities, there has been long-term coexistence between these species in Beaver Creek. This system presents a unique opportunity to study the mechanisms that lead cutthroat trout to coexist with rather than be replaced by nonnative brook trout.  相似文献   

11.
Forty - five percent of 306 brown trout from 16 Montana streams were infected with one or more of the nematodes Cystidicoloides salvelini, Bulbodacnitis globosa, Rhabdochona sp., and Eustrongylides sp. The relationships between incidence and intensity of nematode infections and age and sexual maturity of the host fish were studied. Generally, sexually mature female brown trout had a higher rate of infection and had more nematodes per infected fish than immature female brown trout. Higher incidence and intensity of infection in sexually mature fish was attributed to more aggressive feeding behavior leading to more exposure to the intermediate hosts (mayflies) of the nematode parasites.      相似文献   

12.
Totals of 101 native Yellowstone cutthroat ( Oncorhynchus clarki bouvieri ), 27 introduced lake trout ( Salvelinus namaycush ), and 40 introduced longnose sucker ( Catostomus catostomus ) from Yellowstone Lake, Wyoming, USA, were examined for eye flukes. Metacercariae of the trematode fluke Diplostomum were in vitreous humor and/or lens of 94% of Yellowstone cutthroat trout, 92% of lake trout, and 78% of longnose sucker. Longnose sucker had 7% prevalence of infection in both lens and vitreous humor of metacercariae, while Yellowstone cutthroat trout had 3% and lake trout 8%. Diplostomum spathaceum was in lens tissue of 5% of infected Yellowstone cutthroat trout and 93% of longnose sucker; Diplostomum baeri was in vitreous humor of 92% each of infected Yellowstone cutthroat trout and lake trout. Morphological characteristics indicate that a single species infected the lens of Yellowstone cutthroat trout and longnose sucker, while another species infected lake trout. Impacts of the parasite interchange between native and introduced fishes of Yellowstone Lake, Wyoming, are unknown but should be monitored each year.  相似文献   

13.
At Walker Lake, Nevada, tui chub were collected 1975–1977 for analysis of age, growth rate, and food habits. The fork length (FL) – scale radius (SR) relationship was linear and described by the equation FL = 4.44 + 3.17 (SR). Age I, II, III, and IV chub were 116, 176, 218, and 242 mm fork length, respectively. Maximum longevity was six years. The length weight relationship was defined by the log transformed linear equation log weight = - 4.65 + 2.93 (log FL). Chub collected from pelagic regions ate mostly zooplankton, whereas chub collected from littoral areas had a diet of zooplankton and benthic organisms.      相似文献   

14.
We determined variability in counts of meristic features (pyloric caecae, vertebrae, pelvic fin rays, gillrakers, basibranchial teeth, scales above the lateral line, and scales in the lateral series) of Yellowstone cutthroat trout ( Oncorhynchus clarki bouvieri ) by 3 independent readers, by the same reader on 3 different occasions, and among fish from 12 sampling sites within a 650-km 2 watershed. Genetic purity of the cutthroat trout was determined by electrophoretic analysis. Significant differences in meristic counts were observed among 3 readers and among sampling sites, but not among 3 occasions by a single reader. Scale counts were within the reported range for Yellowstone cutthroat trout, but counts of other structures (pyloric caecae, gillrakers, vertebrae) were as similar to rainbow trout as to Yellowstone cutthroat trout. Meristic counts identified the fish as cutthroat trout; however, variation among readers and sampling sites, as well as within the species, limits their use when identifying genetically pure cutthroat trout or assessing possible integration with rainbow trout.  相似文献   

15.
Inland populations of cutthroat trout have suffered dramatic declines and some subspecies are considered threatened or endangered. Understanding patterns of variation and factors that influence life history in populations is important for conservation and management. We determined effects of elevation, sex, and genetic introgression (with Yellowstone cutthroat trout, Oncorhynchus clarkii lewisi , and rainbow trout, Oncorhynchus mykiss ) on growth rates of Colorado River cutthroat trout ( Oncorhynchus clarkii pleuriticus ) in the Sheep Creek drainage in the Uinta Mountains of Utah. In this high-elevation system, native trout grew slowly and matured relatively late. Elevation, sex, and genetic introgression all had significant effects on growth rates. Growth rates were lower at higher elevations. Males were slightly larger than females, and cutthroat trout in locations that were more introgressed grew faster than those at nonintrogressed locations. Both abiotic effects and effects of introduced salmonids must be addressed in long-term management programs to ensure the sustainability of native trout populations.  相似文献   

16.
Burrowing Owls ( Athene cunicularia ) were studied in a prairie dog town of southwestern South Dakota. Pellets regurgitated by Burrowing Owls contained a wide variety of prey remains. Insects, spiders, small mammals, and vegetation were the most frequent items identified in the pellets. Mammals were consumed most frequently during spring and early summer. Insects were consumed in large numbers during the entire period of this study, but they became more frequent in owl pellets during late summer and fall in association with a decline of mammal remains. Some prey items observed around owl nest sites were not found in the pellets examined. Possible secondary poisoning of some prey of Burrowing Owls has not produced any change in owl food habits, based on other studies reported in the literature.      相似文献   

17.
Field surveys were conducted during 1997 and 1998 documenting the distribution and abundance of Colorado River cutthroat trout ( Oncorhynchus clarki pleuriticus ) in Escalante River tributaries. This documented occurrence of native trout in the Escalante River drainage of southern Utah represents an expansion of the known historic range of this subspecies as reported before the 1990s. We found 5 populations of native trout ranging in biomass from 3.0 to 104.2 kg ha -1 and occupying 13.2 km of stream of 130 km of estimated historic habitat. Current distribution and abundance of Colorado River cutthroat trout were compared to early introductions of nonnative trout stocked for sport fishing purposes. Native cutthroat trout have been displaced by nonnative cutthroat trout ( O. c. bouveri ), rainbow trout ( O. mykiss ), brook trout ( Salvelinus fontinalis ), and brown trout ( Salmo trutta ) except where they were isolated by physical or biological barriers. Displacement may have been more extensive except for the remoteness of the drainage and relatively recent introductions of nonnative trout. These conditions limited the overall amount of the drainage stocked, numbers of nonnative trout stocked, and time over which stocking occurred. Discoveries of native trout populations within the Escalante River drainage have allowed expanded conservation of this subspecies by adding new populations to what was known to exist and by increasing the known natural range of this fish.  相似文献   

18.
A 36.9x10 6 m 3 reservoir constructed on Huntington River, Emery County, Utah, resulted in changes in physical habitat, water quality, temperature, and flow regime. The greatest changes in physical habitat resulted from: (1) sediment additions from dam and road construction plus erosion of reservoir basin during filling; and (2) changing stream flow from a spring high runoff regime to a moderated flow regime. Elimination of spring nutrient concentration peaks and overall reduction of total dissolved nutrient availability in the river plus moderate reductions in pH were the most apparent water quality changes below the reservoir. Water temperature changes were an increased diurnal and seasonal constancy, summer depression, and winter elevation, generally limited to a 10–12 km reach below the dam. Physical and chemical changes altered macroinvertebrate community structure, with changes greatest near the dam and progressively less as distance downstream increased. Below the dam: (1) more environmentally tolerant taxa increased their dominance; (2) relative numbers of smaller sized individuals increased in relation to larger individuals; and (3) filter feeding, collector/gatherers, and scrapers gained an advantage over shredders. Insect taxa such as Rhithrogena robusta, Pteronarcella badia, and Ephemerella doddsi were eliminated from stream reaches near the dam, and other taxa such as Arctopsyche grandis, Chironomidae, and Simuliidae increased in numbers. Late spring to early summer egg hatch proved to be a disadvantage to Brachycentrus occidentalis, and B. americanus, with a fall hatch, was less impacted by altered river flow patterns. Macroinvertebrate taxa with small instar larvae present from late summer to early fall were negatively impacted by the unnaturally high July and August flows. The reservoir became a physical barrier to downstream larval drift and upcanyon and downcanyon immigration of adults, resulting in reduced numbers of several species above and below the reservoir.      相似文献   

19.
The weight of body water and fat-free dry weight of Uinta ground squirrels ( Spermophilus armatus ) is given as a function of body weight. Body fat is presented as a function of body weight and body length. An equation for calculating the total caloric content of Uinta ground squirrels is given. Fat index (weight of fat/fat-free dry weight) values of juveniles increased from 0.11 to 0.22 from 5 June to 28 July. In male yearlings and adults the fat index increased about 8 to 9 times in the latter half of June and early July.      相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号