首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
利用分子反应静力学的基本原理,确定了HX(X=F,C1,Br)等分子的X^1∑^+态的合理离解极限;使用二次组态相互作用方法QCISD(T)并选用6—311G++G(3df,3pd)基组,对HX(X=F,C1,Br)等分子基态进行了单点能扫描计算,并用最小二乘法拟合的Murrell—Sorbie函数和修正的Murrell—Sorbie函数计算它们光谱数据(ωe、ωeXe、Be、ae、De),结果表明修正的Murrell—Sorbie函数计算值与实验光谱数据吻合较好.这表明修正的Murrell—Sorbie函数更能精确的描述HX(X=F,C1,Br)等分子基态的势能函数.  相似文献   

2.
运用Gaussian94程序,由从头计算方法计算了基态SiC(x^1∑^+)分子的平衡结构和离解能,利用单点计算的结果,采用Murre-Scorbie函数形式,拟合出了SiC分子的分析热能函数,并计算出SiC分子的光谱常数ωe,ωeXe,Be,αe的值。  相似文献   

3.
SiO分子的基态(X1Σ+)势能函数的研究   总被引:3,自引:7,他引:3  
运用Gaussian03程序,使用从头算方法计算了SiO分子基态(X1Σ+)的平衡结构和离解能,利用单点能计算的结果,采用正规方程组拟合Murrell-Sorbie函数,得出SiO分子的基态分析势能函数,并且计算出SiO分子的光谱常数ωe、ωeχe、Be和αe的值,计算结果与实验值符合得较好.  相似文献   

4.
利用分子反应静力学的原理,导出了7Li2分子X1Σ+g态的合理离解极限;使用HF、B3LYP、 B3P86、QCISD和QCISD(T)方法和D95、D95V、D95V(d,p)、D95V(3df,3pd)、6-311G、6-311G(d)、6-311G(d,p)、6-311G(3df,3pd)基组,对7Li2分子X1Σ+g态的平衡几何、谐振频率和离解能进行了优化计算,比较得出QCISD(T)/6-311G(3df,3pd)为最优方法/基组.在QCISD(T)/6-311G(3df,3pd)水平下,对7Li2分子X1Σ+g态进行了单点能扫描,并用正规方程组拟合出了其解析势能函数.根据拟合出的解析势能函数计算出了X1Σ+g态的光谱常数Be=0.656 cm-1,αe=0.006 cm-1和ωeχe=2.85 cm-1及二阶、三阶和四阶力常数f2=26.159 aJ·nm-2,f3=-533.479 aJ·nm-3和f4=5 688.5 aJ·nm-4.  相似文献   

5.
利用群论及原子分子反应静力学的有关原理,推导了SiH(SiD,SiT)分子基态的电子态和合理的离解极限.采用量子力学从头算法,应用二次组态相互作用QCISD/6—311g(df,2pd)方法对SiH,SiD,SiT的基态平衡结构和谐振频率进行了优化计算.并使用该方法和基组对SiH(SiD,SiT)分子的基态进行了单点能扫描计算,用正规方程组拟合了Murrel—Sorbie势能函数,得到了该态的完整的势能函数.从得到的势能函数计算了基态的光谱常数,结果与实验数据较为一致.  相似文献   

6.
CN分子基态(X^2∑^+)的结构与分析势能函数   总被引:1,自引:1,他引:1  
利用原子分子反应静力学的有关原理,推导出了CN分子的合理离解极限.采用密度泛函理论的B3LYP方法和二次组态相互作用的QCISD和QCISD(T)等理论方法,在D95(d),6-311G^*和6-311+G^*基组下,对CN分子基态的平衡结构、离解能和谐振频率进行了优化计算,利用QCISD/6-311+G^*对CN分子的基态进行了单点能量扫描,并将扫描结果用正规方程组拟合Murrell-Sorbie势能函数.由拟合得到的势能函数计算与X^2∑^+态相应的光谱常数(Be、αe、ωe和ωeχe),其结果与实验符合得较好.  相似文献   

7.
HCl分子基态(X^1 ∑^+)的平衡几何与势能函数   总被引:1,自引:0,他引:1  
采用密度泛函理论的B3LYP方法和二次组态相互作用的QCISD和QCISD(T)等理论方法,在D95(d),6—311G(d,P)和6—311G(3df,3pd)基组下,对HCl分子基态的平衡结构、离解能和谐振频率进行了优化计算,利用QCISD/d95(d)对HCl分子的基态进行了单点能量扫描,并将扫描结果用正规方程组拟合Murrell—Sorbie势能函数.由拟舍得到的势能函数,计算与X^1 ∑^+态相应的光谱常数(Be、αe ωe和ωeXe),其结果与实验符合得较好.  相似文献   

8.
采用量子力学abinitio从头算,运用Gaussian03软件包中的三种方法结合不同基组优化计算了BeO分子基态(X^1∑^+)的结构,选用二次组态相互作用QCISD(T)方法结合、6-311++G**(3af,3N)基组对BeO分子基态(X^1∑^+)进行了单点能扫描计算;用Murrell-Sorbie函数表示分子解析势能函数,得出了相关系数和力常数,并计算出了BeO分子的光谱数据(ωe、ωeXe、Be、αe、De),结果与实验光谱数据吻合较好。  相似文献   

9.
采用密度泛函方法(B3LYP)和二次组态相互作用方法(QCISD(T))优化计算了OT,DT分子基态(X^2Ⅱ)的平衡结构、振动频率和离解能.根据原子分子反应静力学原理,导出了OT,DT分子基态(X^2Ⅱ)的合理离解极限,采用最小二乘法拟合Murrell—Sorbie函数得到了相应的势能函数和与该基态相对应的光谱常数(Be,αe,ωe,和ωeχe),计算结果与实验数据符合得相当好.  相似文献   

10.
利用原子分子反应静力学的有关原理,推导出了BeF分子的合理离解极限;采用密度泛函理论的B3P86方法,在6-311G,6-311++G,6-311G(3df,3pd),cc-PVQZ和cc-PVTZ基组下,对BeF分子基态的平衡结构、离解能和谐振频率进行了优化计算,利用B3P86/6-311G(3df,3pd)对BeF分子的基态进行了单点能量扫描,并将扫描结果用正规方程组拟合Murrell-Sorbie势能函数.由拟合得到的势能函数,计算与X^2∑^+态相应的光谱常数(Be,eα,ωe和eωχe),其结果与实验符合得较好.  相似文献   

11.
LaH分子基态X^1∑^+的量子力学计算   总被引:2,自引:1,他引:1  
有考虑相对论有效原子实势近似下,用G94W程序的QCISD方法计算了LaH分子基态X^1∑^+的Murrell-Sorbie解析势能函数及其对应的平衡几何与光谱参数,计算得到的Re,De,Be,ce,ωe和ωexe的理论计算值分别为:0.2125nm,2.623eV,3.7333,0.0723,1461.72和21.383(cm^-1),该结果与实验数据及理论数据符合得比较好。  相似文献   

12.
根据群论及原子分子反应静力学原理,推导了SeH(Se2H)分子基态(X2∏)与SeH-离子基态(X1∑)的电子态及相应的离解极限.采用量子力学从头算方法,运用二次组态相互作用QCISD(T)和电子相关单双耦合簇CCSD(T)方法及6311++G(3df,3pd)基组,标准的MurrellSorbie函数及修正的MurrellSorbie+c6函数,对SeH(Se2H)分子基态(X2Π)与SeH-离子基态(X1∑)的平衡结构和谐振频率进行了几何优化计算.由作者导出的相应光谱数据(ωe,ωeχe,  相似文献   

13.
SiGe和SiSe分子基态的结构和解析势能函数   总被引:1,自引:1,他引:0  
本文利用密度泛函方法,优化了SiGe和SiSe的基态能量,平衡结构和谐振频率. 根据原子分子反应静力学原理,导出了SiGe和SiSe的合理离解极限和离解能. 应用密度泛函(B3LYP)扫描了SiGe和SiSe分子基态的势能曲线,并利用最小二乘法拟合得到了SiGe和SiSe的M-S解析势能函数,并计算出各态的谐振频率, 力常数和光谱数据.  相似文献   

14.
利用Gaussian09程序包中单双取代的耦合簇理论(CCSD)对LiX-(X=H,F,Cl)分子离子基态进行了几何优化和频率计算,进一步进行了单点能扫描计算.用最小二乘法拟合得到了LiX-(X=H,F,Cl)分子离子基态的Murrell—Sorbie势能函数,计算得到了LiX-(X=H,F,Cl)分子离子基态的力常量.  相似文献   

15.
采用ab initio CID/MC-311G方法计算了HCl^+(X^2П)和HC^-(X^2Σ^+)的势能函数值,并根据光谱数据导出了HCl^+(X^2П)的Murrell-sorbie势能函数,采用最小二乘法拟合出了HCl^-(X^2Σ^+)的解析势能函数。  相似文献   

16.
运用Gaussian 94程序 ,由从头计算方法计算了基态SiC(X1Σ )分子的平衡结构和离解能 ,利用单点计算的结果 ,采用Murrell Sorbie函数形式 ,拟合出了SiC分子的分析势能函数 ,并计算出SiC分子的光谱常数ωe,ωeχe,Be,αe的值 .  相似文献   

17.
18.
应用群论及原子分子反应静力学方法推导了HOC1分子的电子态及其离解极限,采用B3P86方法,在CC-PVTZ水平上,优化出HOC1基态分子稳定构型为单重态的Cs构型,其平衡核间距RH-O=0.0965nm、RCI-O=0.1692nm、∠HOC1=102.9°,能量为.536.5061a.u..同时计算出基态的简正振动频率:对称伸缩振动频率V(A)=769.6cm^-1,弯曲振动频率V(A′)=1273.3cm^-1和反对称伸缩振动频率V(A′)=3805.8cm^-1.在此基础上,使用多体项展式理论方法,导出了基态HOC1分子的全空间解析势能函数,该势能函数准确再现了HOC1(Cs)平衡结构.  相似文献   

19.
20.
使用SAC/SAC—CI和D95++**、6—311++g**及cc—PVTZ基组,分别对D2分子的基态X^1∑6^+、第二激发态B^1∑u^+和第三简并激发态CI见的平衡结构和谐振频率进行优化计算.对所有计算结果进行比较,得出cc—PVTZ基组为最优基组.运用cc—PVTZ基组和SAC方法对基态X^1∑g^+、SAC—CI方法对激发态B^1∑u^+和C^1∏u进行单点能扫描计算,并用正规方程组拟合Murrell—Sorbie函数,得到相应电子态的势能函数解析式,由得到的势能函数计算了与X^1∑g^+、B^1∑u^+和C^1∏u态相对应的光谱常数,结果与实验数据较为一致.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号