首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
Syndecan-1 is required for Wnt-1-induced mammary tumorigenesis in mice   总被引:17,自引:0,他引:17  
Syndecan-1 is a cell-surface, heparan-sulphate proteoglycan (HSPG) predominantly expressed by epithelial cells. It binds specifically to many proteins, including oncoproteins. For example, it induces the assembly of a signalling complex between FGF ligands and their cognate receptors. But so far there has been no direct evidence that this proteoglycan contributes to tumorigenesis. Here we have examined the role of syndecan-1 (encoded by Sdc1) during mammary tumour formation in response to the ectopic expression of the proto-oncogene Wnt1. We crossed syndecan-1-deficient mice with transgenic mice that express Wnt1 in mammary gland (TgN(Wnt-1)1Hev; ref. 2). Ectopic Wnt-1 expression induces generalized mammary hyperplasia, followed by the development of solitary tumours (median time 22 weeks). We show that in Sdc1-/- mice, Wnt-1-induced hyperplasia in virgin mammary gland was reduced by 70%, indicating that the Wnt-1 signalling pathway was inhibited. Of the 39 tumours that developed in a test cohort of mice, only 1 evolved in the Sdc1-/- background. In addition, we show that soluble syndecan-1 ectodomain purified from mouse mammary epithelial cells stimulates the activity of a Wnt-1 homologue in a tissue culture assay. Our results provide both genetic and biochemical evidence that syndecan-1 can modulate Wnt signalling, and is critical for Wnt-1-induced tumorigenesis of the mouse mammary gland.  相似文献   

2.
The mechanism by which the eukaryotic DNA-replication machinery penetrates condensed chromatin structures to replicate the underlying DNA is poorly understood. Here we provide evidence that an ACF1-ISWI chromatin-remodeling complex is required for replication through heterochromatin in mammalian cells. ACF1 (ATP-utilizing chromatin assembly and remodeling factor 1) and an ISWI isoform, SNF2H (sucrose nonfermenting-2 homolog), become specifically enriched in replicating pericentromeric heterochromatin. RNAi-mediated depletion of ACF1 specifically impairs the replication of pericentromeric heterochromatin. Accordingly, depletion of ACF1 causes a delay in cell-cycle progression through the late stages of S phase. In vivo depletion of SNF2H slows the progression of DNA replication throughout S phase, indicating a functional overlap with ACF1. Decondensing the heterochromatin with 5-aza-2-deoxycytidine reverses the effects of ACF1 and SNF2H depletion. Expression of an ACF1 mutant that cannot interact with SNF2H also interferes with replication of condensed chromatin. Our data suggest that an ACF1-SNF2H complex is part of a dedicated mechanism that enables DNA replication through highly condensed regions of chromatin.  相似文献   

3.
AID is required for germinal center-derived lymphomagenesis   总被引:1,自引:0,他引:1  
Most human B cell non-Hodgkin's lymphomas (B-NHLs) derive from germinal centers (GCs), the structure in which B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR) before being selected for high-affinity antibody production. The pathogenesis of B-NHL is associated with distinct genetic lesions, including chromosomal translocations and aberrant SHM, which arise from mistakes occurring during CSR and SHM. A direct link between these DNA remodeling events and GC lymphoma development, however, has not been demonstrated. Here we have crossed three mouse models of B cell lymphoma driven by oncogenes (Myc, Bcl6 and Myc/Bcl6; refs. 5,6) with mice lacking activation-induced cytidine deaminase (AID), the enzyme required for both CSR and SHM. We show that AID deficiency prevents Bcl6-dependent, GC-derived B-NHL, but has no impact on Myc-driven, pre-GC lymphomas. Accordingly, abrogation of AID is associated with the disappearance of CSR- and SHM-mediated structural alterations. These results show that AID is required for GC-derived lymphomagenesis, supporting the notion that errors in AID-mediated antigen-receptor gene modification processes are principal contributors to the pathogenesis of human B-NHL.  相似文献   

4.
The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2-/- mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1-/- mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1-/- mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1-/- rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration.  相似文献   

5.
Sox9 is required for cartilage formation.   总被引:32,自引:0,他引:32  
  相似文献   

6.
Nrl is required for rod photoreceptor development.   总被引:21,自引:0,他引:21  
  相似文献   

7.
8.
9.
The mismatch repair system is required for S-phase checkpoint activation   总被引:18,自引:0,他引:18  
Defective S-phase checkpoint activation results in an inability to downregulate DNA replication following genotoxic insult such as exposure to ionizing radiation. This 'radioresistant DNA synthesis' (RDS) is a phenotypic hallmark of ataxia-telangiectasia, a cancer-prone disorder caused by mutations in ATM. The mismatch repair system principally corrects nucleotide mismatches that arise during replication. Here we show that the mismatch repair system is required for activation of the S-phase checkpoint in response to ionizing radiation. Cells deficient in mismatch repair proteins showed RDS, and restoration of mismatch repair function restored normal S-phase checkpoint function. Catalytic activation of ATM and ATM-mediated phosphorylation of the protein NBS1 (also called nibrin) occurred independently of mismatch repair. However, ATM-dependent phosphorylation and activation of the checkpoint kinase CHK2 and subsequent degradation of its downstream target, CDC25A, was abrogated in cells lacking mismatch repair. In vitro and in vivo approaches both show that MSH2 binds to CHK2 and that MLH1 associates with ATM. These findings indicate that the mismatch repair complex formed at the sites of DNA damage facilitates the phosphorylation of CHK2 by ATM, and that defects in this mechanism form the molecular basis for the RDS observed in cells deficient in mismatch repair.  相似文献   

10.
Chfr is required for tumor suppression and Aurora A regulation   总被引:7,自引:0,他引:7  
Tumorigenesis is a consequence of loss of tumor suppressors and activation of oncogenes. Expression of the mitotic checkpoint protein Chfr is lost in 20-50% of primary tumors and tumor cell lines. To explore whether downregulation of Chfr contributes directly to tumorigenesis, we generated Chfr knockout mice. Chfr-deficient mice are cancer-prone, develop spontaneous tumors and have increased skin tumor incidence after treatment with dimethylbenz(a)anthracene. Chfr deficiency leads to chromosomal instability in embryonic fibroblasts and regulates the mitotic kinase Aurora A, which is frequently upregulated in a variety of tumors. Chfr physically interacts with Aurora A and ubiquitinates Aurora A both in vitro and in vivo. Collectively, our data suggest that Chfr is a tumor suppressor and ensures chromosomal stability by controlling the expression levels of key mitotic proteins such as Aurora A.  相似文献   

11.
According to the prevailing view, mammalian X chromosomes are enriched in spermatogenesis genes expressed before meiosis and deficient in spermatogenesis genes expressed after meiosis. The paucity of postmeiotic genes on the X chromosome has been interpreted as a consequence of meiotic sex chromosome inactivation (MSCI)--the complete silencing of genes on the XY bivalent at meiotic prophase. Recent studies have concluded that MSCI-initiated silencing persists beyond meiosis and that most genes on the X chromosome remain repressed in round spermatids. Here, we report that 33 multicopy gene families, representing approximately 273 mouse X-linked genes, are expressed in the testis and that this expression is predominantly in postmeiotic cells. RNA FISH and microarray analysis show that the maintenance of X chromosome postmeiotic repression is incomplete. Furthermore, X-linked multicopy genes exhibit a similar degree of expression as autosomal genes. Thus, not only is the mouse X chromosome enriched for spermatogenesis genes functioning before meiosis, but in addition, approximately 18% of mouse X-linked genes are expressed in postmeiotic cells.  相似文献   

12.
RNA-directed DNA methylation (RdDM) is a process in which dicer-generated small RNAs guide de novo cytosine methylation at the homologous DNA region. To identify components of the RdDM machinery important for Arabidopsis thaliana development, we targeted an enhancer active in meristems for methylation, which resulted in silencing of a downstream GFP reporter gene. This silencing system also features secondary siRNAs, which trigger methylation that spreads beyond the targeted enhancer region. A screen for mutants defective in meristem silencing and enhancer methylation retrieved six dms complementation groups, which included the known factors DRD1 (ref. 3; a SNF2-like chromatin-remodeling protein) and Pol IVb subunits. Additionally, we identified a previously unknown gene DMS3 (At3g49250), encoding a protein similar to the hinge-domain region of structural maintenance of chromosomes (SMC) proteins. This finding implicates a putative chromosome architectural protein that can potentially link nucleic acids in facilitating an RNAi-mediated epigenetic modification involving secondary siRNAs and spreading of DNA methylation.  相似文献   

13.
The expression pattern and activity of fibroblast growth factor-8 (FGF8) in experimental assays indicate that it has important roles in limb development, but early embryonic lethality resulting from mutation of Fgf8 in the germ line of mice has prevented direct assessment of these roles. Here we report that conditional disruption of Fgf8 in the forelimb of developing mice bypasses embryonic lethality and reveals a requirement for Fgf8 in the formation of the stylopod, anterior zeugopod and autopod. Lack of Fgf8 in the apical ectodermal ridge (AER) alters expression of other Fgf genes, Shh and Bmp2.  相似文献   

14.
15.
Tubulin glutamylation is a post-translational modification that occurs predominantly in the ciliary axoneme and has been suggested to be important for ciliary function. However, its relationship to disorders of the primary cilium, termed ciliopathies, has not been explored. Here we mapped a new locus for Joubert syndrome (JBTS), which we have designated as JBTS15, and identified causative mutations in CEP41, which encodes a 41-kDa centrosomal protein. We show that CEP41 is localized to the basal body and primary cilia, and regulates ciliary entry of TTLL6, an evolutionarily conserved polyglutamylase enzyme. Depletion of CEP41 causes ciliopathy-related phenotypes in zebrafish and mice and results in glutamylation defects in the ciliary axoneme. Our data identify CEP41 mutations as a cause of JBTS and implicate tubulin post-translational modification in the pathogenesis of human ciliary dysfunction.  相似文献   

16.
R-spondins are a recently characterized small family of growth factors. Here we show that human R-spondin1 (RSPO1) is the gene disrupted in a recessive syndrome characterized by XX sex reversal, palmoplantar hyperkeratosis and predisposition to squamous cell carcinoma of the skin. Our data show, for the first time, that disruption of a single gene can lead to complete female-to-male sex reversal in the absence of the testis-determining gene, SRY.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号