首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A central role for denervated tissues in causing nerve sprouting   总被引:3,自引:0,他引:3  
M C Brown  R L Holland 《Nature》1979,282(5740):724-726
One of the oldest known forms of neuronal plasticity is the ability of peripheral nerves to grow and form functional connections after damage to neighbouring axons. Yet the source of the signal which elicits this "sprouting" remains unknown. In mammalian muscles, paralysis-which gives rise to many of the changes which occur in denervated muscles-causes motor nerve terminals to sprout. Could the inactive muscle fibres (rather than nerve degeneration products, another likely source) be responsible for some of the sprouting found in partial denervation? We confirm in this paper that direct stimulation of a partially denervated muscle inhibits sprouting and show that stimulation does so by activating the denervated fibres. Consequently after partial denervation the same signal as that which causes terminal sprouting in a paralysed muscle is able to spread from the denervated muscle fibres to the nerves on the innervated fibres and initiate terminal sprouting.  相似文献   

2.
J R Slack  W G Hopkins  M N Williams 《Nature》1979,282(5738):506-507
When disease or injury causes partial loss of innervation from a muscle, the remaining axons sprout and form new connections to the denervated muscle fibres. Sprouting can occur in two ways: from axon terminals (terminal sprouting) or from the intramuscular axons themselves, probably from the nodes of Ranvier (collateral sprouting). Terminal sprouting has been induced experimentally using various methods, including partial denervation, nerve conduction block and nerve transmission block. A common factor in the induction of terminal sprouting seems to be changes in the surface membrane of muscle fibres; these changes and terminal sprouting are prevented by direct stimulation of the muscle. Collateral sprouting has been induced only by partial denervation and is not prevented by direct stimulation. This has been taken as evidence for an earlier suggestion that products of nerve or axon degeneration may be a direct stimulus for collateral sprouting. We report here that axon degeneration products alone are probably not the stimulus for collateral sprouting.  相似文献   

3.
W D Snider  G L Harris 《Nature》1979,281(5726):69-71
Recent investigations have established that many of the normal properties of muscle fibres are maintained, at least in part, by muscle activity. Thus, a fall in resting membrane potential, an increase in input resistance, and spread of acetylcholine receptors to extrajunctional sites can all be induced by abolishing muscle activity and prevented by direct stimulation of denervated muscle fibres. Muscle activity also exerts a trophic influence on the innervating motoneurones; furthermore it may be a factor in the regulation of sprouting. Brown and Ironton found fine, "ultra-terminal sprouts" emanating from the endplates of muscles rendered inactive by chronic conduction block of the muscle nerve. Pestronk and Drachman saw increased branching of the motor nerve terminal and a consequent increase in endplate size in similar conditions. If these sprouts at the endplates of inactive muscles were functional, one might expect more transmitter to be released in response to nerve stimulation. We report here that both quantum content and spontaneous miniature endplate potential (m.e.p.p) frequency are increased at the terminals of inactive (disused) muscles.  相似文献   

4.
F H Gage  A Bj?rklund  U Stenevi 《Nature》1983,303(5920):819-821
Functional recovery after denervating lesions in the central nervous system (CNS) is particularly prominent if part of the lesioned projection is spared. Several plasticity mechanisms, such as collateral sprouting, hyperactivity of remaining axons and development of receptor supersensitivity, probably contribute to efficient recovery after subtotal lesions. Although denervation-induced collateral sprouting and presynaptic compensatory hyperactivity in spared axons have been described in various systems, any possible interaction or cooperation between the two mechanisms in restoring synaptic transmission in a partially denervated target has so far not been demonstrated. We have shown previously that partial adrenergic denervation of the hippocampus in adult rats is followed by a slow and protracted reinnervation by collateral sprouting from the spared adrenergic afferents. We now report that the partial adrenergic deafferentation is accompanied by a transient increase in turnover of the transmitter in remaining axons which subsides when the denervated region becomes reinnervated, and that the development of this compensatory hyperactivity is confined to the area of maximal denervation. The topographical specificity of the compensatory noradrenergic hyperactivity response, and the interaction between this hyperactivity and the collateral reinnervation process, strongly suggest that the changes in transmitter turnover in spared afferents after denervating lesions can be regulated by local mechanisms operating within the denervated target area.  相似文献   

5.
J S Eisen  P Z Myers  M Westerfield 《Nature》1986,320(6059):269-271
How is the adult pattern of connections between motoneurones and the muscles that they innervate established during vertebrate development? Populations of motoneurones are thought to follow one of two patterns of development: (1) motor axons initially follow stereotyped pathways and project to appropriate regions of the developing muscle or (2) motor axons initially project to some regions that are incorrect, the inappropriate projections being eliminated subsequently. Here we observed individually identified motoneurones in live zebra fish embryos as they formed growth cones and as their growth cones navigated towards their targets. We report that from axogenesis, each motor axon followed a stereotyped pathway and projected only to the specific region of the muscle appropriate for its adult function. In addition, the peripheral arbor established by each motoneurone was restricted to a stereotyped region of its own segment and did not overlap with the peripheral arbor of the other motoneurones in that segment. We conclude that the highly stereotyped pattern of innervation seen in the adult is due to initial selection of the appropriate pathway, rather than elimination of incorrect projections.  相似文献   

6.
In the developing nervous system, axons project considerable distances along stereotyped pathways to reach their targets. Axon guidance depends partly on the recognition of cell-surface and extracellular matrix cues derived from cells along the pathways. It has also been proposed that neuronal growth cones are guided by gradients of chemoattractant molecules emanating from their intermediate or final cellular targets. Although there is evidence that the axons of some peripheral neurons in vertebrates are guided by chemotropism and the directed growth of some central axons to their targets is consistent with such a mechanism, it remains to be determined whether chemotropism operates in the central nervous system. During development of the spinal cord, commissural axons are deflected towards a specialized set of midline neural epithelial cells, termed the floor plate, which could reflect guidance by substrate cues or by diffusible chemoattractant molecules. Here we provide evidence in support of chemotropic guidance by demonstrating that the rat floor-plate cells secrete a diffusible factor(s) that influences the pattern and orientation of commissural axon growth in vitro without affecting other embryonic spinal cord axons. These findings support the hypothesis that chemotropic mechanisms guide developing axons to their intermediate targets in the vertebrate CNS.  相似文献   

7.
Chondroitinase ABC promotes functional recovery after spinal cord injury   总被引:82,自引:0,他引:82  
The inability of axons to regenerate after a spinal cord injury in the adult mammalian central nervous system (CNS) can lead to permanent paralysis. At sites of CNS injury, a glial scar develops, containing extracellular matrix molecules including chondroitin sulphate proteoglycans (CSPGs). CSPGs are inhibitory to axon growth in vitro, and regenerating axons stop at CSPG-rich regions in vivo. Removing CSPG glycosaminoglycan (GAG) chains attenuates CSPG inhibitory activity. To test the functional effects of degrading chondroitin sulphate (CS)-GAG after spinal cord injury, we delivered chondroitinase ABC (ChABC) to the lesioned dorsal columns of adult rats. We show that intrathecal treatment with ChABC degraded CS-GAG at the injury site, upregulated a regeneration-associated protein in injured neurons, and promoted regeneration of both ascending sensory projections and descending corticospinal tract axons. ChABC treatment also restored post-synaptic activity below the lesion after electrical stimulation of corticospinal neurons, and promoted functional recovery of locomotor and proprioceptive behaviours. Our results demonstrate that CSPGs are important inhibitory molecules in vivo and suggest that their manipulation will be useful for treatment of human spinal injuries.  相似文献   

8.
L Schnell  M E Schwab 《Nature》1990,343(6255):269-272
After lesions in the differentiated central nervous system (CNS) of higher vertebrates, interrupted fibre tracts do not regrow and elongate by more than an initial sprout of approximately 1 mm. Transplantations of pieces of peripheral nerves into various parts of the CNS demonstrate the widespread capability of CNS neurons to regenerate lesioned axons over long distances in a peripheral nerve environment. CNS white matter, cultured oligodendrocytes (the myelin-producing cells of the CNS), and CNS myelin itself, are strong inhibitors of neuron growth in culture, a property associated with defined myelin membrane proteins of relative molecular mass (Mr) 35,000 (NI-35) and 250,000 (NI-250). We have now intracerebrally applied the monoclonal antibody IN-1, which neutralizes the inhibitory effect of both these proteins, to young rats by implanting antibody-producing tumours. In 2-6-week-old rats we made complete transections of the cortico-spinal tract, a major fibre tract of the spinal cord, the axons of which originate in the motor and sensory neocortex. Previous studies have shown a complete absence of cortico-spinal tract regeneration after the first postnatal week in rats, and in adult hamsters and cats. In IN-1-treated rats, massive sprouting occurred at the lesion site, and fine axons and fascicles could be observed up to 7-11 mm caudal to the lesion within 2-3 weeks. In control rats, a similar sprouting reaction occurred, but the maximal distance of elongation rarely exceeded 1 mm. These results demonstrate the capacity for CNS axons to regenerate and elongate within differentiated CNS tissue after the neutralization of myelin-associated neurite growth inhibitors.  相似文献   

9.
M Chaput  V Claes  D Portetelle  I Cludts  A Cravador  A Burny  H Gras  A Tartar 《Nature》1988,332(6163):454-455
Neuroleukin (NLK) is a protein of relative molecular mass (Mr) 56,000 (56K) secreted by denervated rat muscle and found in large amounts in muscle, brain, heart and kidneys. The protein is a neurotrophic factor for spinal and sensory neurons and a lymphokine product of lectin-stimulated T-cells. It also induces immunoglobulin secretion by human mononuclear cells. Molecular clones of NLK have been expressed in monkey COS cells and the product was shown to have the same biological and biochemical properties as the extracted protein. NLK is abundant in muscle, brain and kidney, but is active at concentrations of 10(-9) to 10(-11) M, similar to those for other polypeptide factors. We have cloned the gene for pig muscle phosphohexose isomerase (PHI) (EC 5.3.1.9) which catalyses the conversion of glucose-6-phosphate to fructose-6-phosphate, an obligatory step in glycolysis, and determined its amino-acid sequence. Surprisingly, it is 90% homologous to the sequence of mouse neuroleukin.  相似文献   

10.
Alilain WJ  Horn KP  Hu H  Dick TE  Silver J 《Nature》2011,475(7355):196-200
Spinal cord injuries often occur at the cervical level above the phrenic motor pools, which innervate the diaphragm. The effects of impaired breathing are a leading cause of death from spinal cord injuries, underscoring the importance of developing strategies to restore respiratory activity. Here we show that, after cervical spinal cord injury, the expression of chondroitin sulphate proteoglycans (CSPGs) associated with the perineuronal net (PNN) is upregulated around the phrenic motor neurons. Digestion of these potently inhibitory extracellular matrix molecules with chondroitinase ABC (denoted ChABC) could, by itself, promote the plasticity of tracts that were spared and restore limited activity to the paralysed diaphragm. However, when combined with a peripheral nerve autograft, ChABC treatment resulted in lengthy regeneration of serotonin-containing axons and other bulbospinal fibres and remarkable recovery of diaphragmatic function. After recovery and initial transection of the graft bridge, there was an unusual, overall increase in tonic electromyographic activity of the diaphragm, suggesting that considerable remodelling of the spinal cord circuitry occurs after regeneration. This increase was followed by complete elimination of the restored activity, proving that regeneration is crucial for the return of function. Overall, these experiments present a way to markedly restore the function of a single muscle after debilitating trauma to the central nervous system, through both promoting the plasticity of spared tracts and regenerating essential pathways.  相似文献   

11.
探讨Tropic1808基因重组蛋白对损伤坐骨神经的新生大鼠脊髓细胞凋亡影响,将新生SD大鼠一侧坐骨神经切断后,用无菌止血海绵包裹断离的神经近侧端,海绵内加入Tropic1808基因重组蛋白,阳性用神经生长因子、阴性用生理盐水作为对照;术后3、6、12h经TUNEL法染色,在光镜、电镜和图像分析系统下,了解L4-L5段脊髓细胞凋亡情况。得到生理盐水组的脊髓出现大量绸亡细胞;Tropic1808基因重组蛋白组凋亡细胞数量较生理盐水组显减少;Tropic1808基因重组蛋白组与神经生长因子组之间凋亡细胞数量的差别无显性意义。说明Tropic1808基因重组蛋白有保护受损神经组织,减少细胞凋亡的作用。  相似文献   

12.
Objective: To determine whether spinal cord decompression plays a role in neural cell apoptosis after spinal cord injury. Study design: We used an animal model of compressive spinal cord injury with incomplete paraparesis to evaluate neural cell apoptosis after decompression. Apoptosis and cellular damage were assessed by staining with terminal deoxynucleotidyl transferase (TdT)-mediated deoxyuridine triphosphate nick-end labelling (TUNEL) and immunostaining for caspase-3, Bcl-2 and Bax. Methods: Experiments were conducted in male Sprague-Dawley rats (n=78) weighing 300~400 g. The spinal cord was compressed posteriorly at T10 level using a custom-made screw for 6 h, 24 h or continuously, followed by decompression by removal of the screw. The rats were sacrificed on Day 1 or 3 or in Week 1 or 4 post-decompression. The spinal cord was removed en bloc and examined at lesion site, rostral site and caudal site (7.5 mm away from the lesion). Results: The numbers of TUNEL-positive cells were significantly lower at the site of decompression on Day 1, and also at the rostral and caudal sites between Day 3 and Week 4 post-decompression, compared with the persistently compressed group. The numbers of cells between Day 1 and Week 4 were immunoreactive to caspase-3 and B-cell lymphoma-2 (Bcl-2)-associated X-protein (Bax), but not to Bcl-2, correlated with those of TUNEL-positive cells. Conclusion: Our results suggest that decompression reduces neural cell apoptosis following spinal cord injury.  相似文献   

13.
H V New  A W Mudge 《Nature》1986,323(6091):809-811
Innervation of muscle by motoneurones induces the development of a characteristic, high density cluster of acetylcholine receptors (AChRs) at the neuromuscular junction. Studies in vitro show that the accumulation of AChRs at nerve-muscle contacts results from both increased insertion of new AChRs into the muscle plasma membrane beneath nerve terminals and redistribution of preexisting AChRs; these two modes of AChR accumulation may be separately controlled since factors have been identified that influence AChR redistribution but not synthesis. Although many aspects of muscle development are regulated by nerve-dependent muscle activity, junctional AChR clusters still develop when neuromuscular transmission is blocked by either curare or alpha-bungarotoxin, suggesting that their formation is mediated by nerve-derived trophic factors other than activity. A molecule immunologically related to calcitonin gene-related peptide (CGRP-I) has been found in motoneurones in a variety of mammals including man. Here we provide indirect evidence that CGRP-I may be a motoneurone-derived trophic factor that increases AChR synthesis at vertebrate neuromuscular junctions.  相似文献   

14.
R W Oppenheim  Q W Yin  D Prevette  Q Yan 《Nature》1992,360(6406):755-757
During normal vertebrate development, about half of spinal motoneurons are lost by a process of naturally occurring or programmed cell death. Additional developing motoneurons degenerate after the removal of targets or afferents. Naturally occurring motoneuron death as well as motoneuron death after loss of targets or after axotomy can be prevented by in vivo treatment with putative target (muscle) derived or other neurotrophic agents. Motoneurons can also be prevented from dying in vitro and in vivo (Y.Q.-W., R.W., D.P., J. Johnson and L. Van Eldik, unpublished data and refs 7, 13, 14) by treatment with central nervous system extracts (brain or spinal cord) and purified central nervous system and glia-derived proteins. Here we report that in vivo treatment of chick embryos with brain-derived neurotrophic factor rescues motoneurons from naturally occurring cell death. Furthermore, in vivo treatment with brain-derived neurotrophic factor (and nerve growth factor) also prevents the induced death of motoneurons that occurs following the removal of descending afferent input (deafferentation). These data indicate that members of the neurotrophin family can promote the survival of developing avian motoneurons.  相似文献   

15.
N Yumoto  N Kim  SJ Burden 《Nature》2012,489(7416):438-442
Motor axons receive retrograde signals from skeletal muscle that are essential for the differentiation and stabilization of motor nerve terminals. Identification of these retrograde signals has proved elusive, but their production by muscle depends on the receptor tyrosine kinase, MuSK (muscle, skeletal receptor tyrosine-protein kinase), and Lrp4 (low-density lipoprotein receptor (LDLR)-related protein 4), an LDLR family member that forms a complex with MuSK, binds neural agrin and stimulates MuSK kinase activity. Here we show that Lrp4 also functions as a direct muscle-derived retrograde signal for early steps in presynaptic differentiation. We demonstrate that Lrp4 is necessary, independent of MuSK activation, for presynaptic differentiation in vivo, and we show that Lrp4 binds to motor axons and induces clustering of synaptic-vesicle and active-zone proteins. Thus, Lrp4 acts bidirectionally and coordinates synapse formation by binding agrin, activating MuSK and stimulating postsynaptic differentiation, and functioning in turn as a muscle-derived retrograde signal that is necessary and sufficient for presynaptic differentiation.  相似文献   

16.
用HRP逆行示踪法,对成年大白鼠两侧坐骨神经端端吻合术后,再生轴突可塑性作了研究。术后1—12月不同时间内,在吻合端左侧0.8cm处,再横断坐骨神经,放入HRP,存活2天,取材观察。结果表明:所有动物脊髓腰骶段两侧前角均出现HRP标记细胞。标记细胞数量随吻合术后时间增长而增加。左侧前角较右侧前角标记细胞多。说明受损的坐骨神经轴突能再生,各自进入对侧的坐骨神经,向脊髓方向延伸。但是,仅部分再生轴突能延伸过缝合处的组织痂。本实验提示再生轴突的可塑性,它受环境因素的影响。  相似文献   

17.
Common mechanisms of nerve and blood vessel wiring   总被引:1,自引:0,他引:1  
Carmeliet P  Tessier-Lavigne M 《Nature》2005,436(7048):193-200
Blood vessels and nerve fibres course throughout the body in an orderly pattern, often alongside one another. Although superficially distinct, the mechanisms involved in wiring neural and vascular networks seem to share some deep similarities. The discovery of key axon guidance molecules over the past decade has shown that axons are guided to their targets by finely tuned codes of attractive and repulsive cues, and recent studies reveal that these cues also help blood vessels to navigate to their targets. Parallels have also emerged between the actions of growth factors that direct angiogenic sprouting and those that regulate axon terminal arborization.  相似文献   

18.
The evoked potentials are regarded as an efficientindex to evaluate the functional status of a nervoussystem[1]. When stimulating the motor area of cerebralcortex with transcranial magnetic stimulation, elec-tronic signals can be obtained at the spinal co…  相似文献   

19.
L Havton  J O Kellerth 《Nature》1987,325(6106):711-714
Axons in the central nervous system (CNS) of mammals do not normally regrow if they are cut, which severely limits restoration of function after injury. We have studied the reactions of adult cat spinal alpha-motoneurons after chronic transection of their axons in the periphery by labelling single cells with horseradish peroxidase. Twelve weeks after the operation, about a third of the axotomized cells had developed a 'supernumerary' axon originating from the cell-body region. These supernumerary axons had variable trajectories and termination fields in the ipsilateral spinal cord but generally anomalous projections. Ultrastructural examination shows that they give rise to boutons that form morphologically normal synaptic contacts with neuronal profiles, although they contain dense-cored vesicles not normally seen in central terminals of alpha-motor axons. We conclude that axotomized neurons in the mammalian CNS may be able to form new synaptic contacts by means of supernumerary axons in the absence of local damage.  相似文献   

20.
Botulinum C2 toxin ADP-ribosylates actin   总被引:45,自引:0,他引:45  
ADP-ribosylation of regulatory proteins is an important pathological mechanism by which various bacterial toxins affect eukaryotic cell functions. While diphtheria toxin catalyses the ADP-ribosylation of elongation factor 2, which results in inhibition of protein synthesis, cholera toxin and pertussis toxin ADP-ribosylate Ns and Ni, respectively, the GTP-binding regulatory components of the adenylate cyclase system, thereby modulating the bidirectional hormonal regulation of the adenylate cyclase. Botulinum C2 toxin is another toxin which has been reported to possess ADP-ribosyltransferase activity. This extremely toxic agent is produced by certain strains of Clostridium botulinum and induces hypotension, an increase in intestinal secretion, vascular permeability and haemorrhaging in the lungs. In contrast to botulinum neurotoxins, the botulinum C2 toxin apparently lacks any neurotoxic effects. Here we report that botulinum C2 toxin ADP-ribosylates a protein of relative molecular mass 43,000 (43K) in intact cells and in cell-free preparations. We present evidence that the 43K protein substrate is actin, which is apparently mono-ADP-ribosylated by the toxin. Botulinum C2 toxin also ADP-ribosylated purified liver G-actin, whereas liver F-actin was only poorly ADP-ribosylated and skeletal muscle actin was not ADP-ribosylated in either its G form or its F form. ADP-ribosylation of liver G-actin by botulinum C2 toxin resulted in a drastic reduction in viscosity of actin polymerized in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号