首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
本文运用Krasnosel'skii不动点定理方法研究了三点边值问题{u″(t)+a(t)f(t,u,u′)=0,t∈[0,1],u(0)=u(1)=αu(η)对称正解的存在性和多解性,这里α∈(0,1),η∈(0,1),f:[0,1]×[0,∞)×(-∞,∞)→[0,∞)连续,且对任意(u,v)∈[0,∞)×(-∞,∞),f(·,u,v)在[0,1]上对称.  相似文献   

2.
考虑一类带有非线性边界条件的四阶微分边值问题{u(4)(t)=f(t,u(t)),t∈(0,1),u(0)=u″(0)=u?(1)=0,u'(1)+C(u(1))u(1)=0,其中f:[0,1]×R→[0,∞)满足L1-Carathéodory条件,C:[0,∞)→[0,∞)连续.通过对该问题格林函数性质的分析,运用L...  相似文献   

3.
本文运用双度量空间中的广义Krasnoselskii’s压缩不动点定理研究了二阶非线性积分边值问题u″+a(t)f(t,u(t),u′(t))=0,t∈(0,1),u(0)=0,u(1)=α∫~η_0u(s)ds正解的存在唯一性,其中■:[0,1]×[0,∞)×R→[0,∞)连续,且当t_0∈[η,1]时a(t_0)0.  相似文献   

4.
利用Krasnoselskii不动点定理讨论三阶常微分方程两点边值问题{um(t)+f(t,u(t))=0,t∈[0,1],u(0)=u'(0)=u'(1)=0正解的存在性与多重性,其中f:[0,1]×[0,∞)→[0,∞)连续.采用不等式条件代替以往的极限条件描述非线性的增长条件.  相似文献   

5.
讨论边值问题Lu:=u (t)=f(t,u(t)),u(0)=u′(η)=u″(1)=0,0≤t≤1,12≤η<1的正解的存在性.设λ1为Lu=λu在相应边值条件下的第一特征值,f(t,u)≥0在[0,1]×[0,∞)上连续,f(0,0)=0,在超线性和次线性条件下,得到边值问题正解存在的一个新结果.  相似文献   

6.
考察了一类含一阶导数的四阶边值问题{u(4)(t)=rf(t,u(t),u'(t)), t∈(0,1),u(0)=u'(0)=u″(1)=u(1)=0正解的全局结构,其中r是正参数, f:[0,1]×[0,∞)×[0,∞)→[0,∞)连续,且f(t,0,0)=0。当参数r在一定范围内变化时,运用Rabinowitz全局分歧定理获得了该问题正解的全局结构,所得结果推广并改进了已有的相关结果。  相似文献   

7.
利用不动点指数理论研究了超线性半正奇异三点边值问题 {u"+f(u(t))+q(t)=0,u(0)=0,u(1)=βu(η) 0相似文献   

8.
研究了一类二阶Sturm-Liouville边值问题{u″+λf(u)=0,t∈(0,1),αu(0)-βu'(0)=0,γu(1)+δu'(1)=0的多解性,其中f:[0,∞)→[0,∞)连续,并存在2列正的点列{a_i}、{b_i},i=1,2,…,n,a_ib_i≤a_(i+1)≤b_(i+1),使得f(a_i)=0,f(b_i)=0,并且在(a_i,b_i)上,f(u)0.  相似文献   

9.
本文利用不动点指数理论证明了如下非线性二阶Robin问题{u″(t)-k~2u(t)+λf(u(t))=0,t∈(0,1),k≠0,u'(0)=0,u(1)=0多个正解的存在性,其中f:[0,∞)→[0,∞)为连续函数且有多个零点,λ0为参数.  相似文献   

10.
研究了非线性项中含有时滞导数项的高阶常微分方程u~((n))(t)+a(t)u(t)=f(t,u(t-τ_0(t)),u′(t-τ_1(t)),…,u~((n-1))(t-τ_(n-1)(t))),t∈R正ω-周期解的存在性,其中n≥2,a:R→(0,∞)连续以ω为周期,f:R×[0,∞)×R~(n-1)→[0,∞)连续,关于t以ω为周期,τ_k:R→[0,∞)连续以ω为周期,k=0,1,…,n-1。运用正算子扰动方法和锥上的不动点指数理论,获得了该方程正ω-周期解的存在性结果。  相似文献   

11.
本文研究了带有导数项的非线性~Newmann~问题 $$ \left\{\begin{array}{ll} u''(t)+ku(t)=f(t,u(t),u''(t)),\quad t\in (0,1),\\[2ex] u''(0)=u''(1)=0 \\[2ex] \end{array}. \right.\eqno $$ 其中~$0相似文献   

12.
本文利用不动点指数理论证明了一类非线性二阶~Robin~问题 $$ \left\{\begin{array}{ll} u''(t)-k^{2}u(t)+\lambda f(u(t))=0, ~~\ \ \ t\in (0,1),~~k\neq0,\\[2ex] u''(0)=0,~~u(1)=0 \end{array} \right. $$ 多个正解的存在性,~其中~$f:[0,\infty)\rightarrow [0,\infty)$~为连续函数且有多个零点,~$\lambda >0$~为参数.  相似文献   

13.
本文运用迭代法研究了带p-Laplacian算子的四阶Sturm-Liouville边值问题{(φp(u″(t)))″+q(t)f(t,u(t),u″(t))=0,t∈(0,1),αu(0)-βu′(0)=0,γu(1)+δu′(1)=0,u″(0)=0,u'(0)=0正解的存在性,其中φp(s)=|s|~(p-2)s,p1;f:[0,1]×[0,+∞)×R→[0,+∞)连续;q(t)0,t∈(0,1).  相似文献   

14.
{\small 本文运用混合单调算子方法研究了带积分边界条件的三阶边值问题 $$\left\{\begin{aligned} &-u''(t)=f(t,u(t),u(\xi t))+g(t,u(t)),\quad~t\in(0,1), \xi\in(0,1),\&u(0)=u''(0)=0,~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\&u''(1)=\int_{0}^{1}q(t)u''(t)dt~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ \end{aligned} \right. $$ 正解的存在唯一性,~其中~$f:[0,1]\times[0,+\infty)^{2}\rightarrow[0,+\infty)$连续,~$g:[0,1]\times[0,+\infty)\rightarrow[0,+\infty)$连续,~$q\in C([0,1],[0,+\infty))$. }  相似文献   

15.
本文运用Dancer全局分歧定理研究了带参数的一阶周期边值问题■正解的全局结构,获得了正解存在的最优区间.其中r为正参数,f∈C(R,R),a∈C([0,1],[0,∞)),且a(t)在[0,1]的任意子区间内不恒为0.  相似文献   

16.
应用~Leggett-Williams~不动点定理研究了四阶三点边值问题 $u^{(4)}(t)=f(t,u(t))\quad ~(t\in [0,1]),$ $u'(0)=u'(\eta)=u''(0)=u(1)=0$ 多个正解的存在性.~其中~$f:[0,1]\times[0,+\infty )\rightarrow[0,+\infty)$~连续,~$\eta\in[\frac{\sqrt{3}}{3},1]$~为常数.~尽管~Green~函数是变号的,~对任意的正整数~$m,$~该问题~仍有正解且至少有~2$m$-1~个正解.  相似文献   

17.
本文研究了三阶周期边值共振问题{v'(t)=f(t,v(t)),t∈[0,T],v~(i)(0)-v~(i)(T)=0,i=0,1,2解的存在性,其中函数f:[0,T]×R→R连续且有界.当非线性项f满足适当条件时,本文发展了上下解方法并得到其解的存在性.主要结果的证明基于Lyapunov-Schmidt过程和解集连通理论.  相似文献   

18.
本文研究了非线性二阶差分方程~Dirichlet~边值问题 $$ \left\{\begin{array}{ll} \Delta^{2}u(t-1)+\lambda a(t)f(u(t))=0,~~~t\in[1,T]_{Z},\u(0)=u(T+1)=0 \end{array} \right. $$ 正解的存在性,~其中~$\Delta u(t-1)=u(t)-u(t-1),T>2$~是一个整数,~$\lambda$~是一个正参数,~$f:[0,\infty)\rightarrow R$~连续且~$f(0)>0$,~权函数~$a:[1,T]_{Z}\rightarrow R$~允许变号.~本文主要结果的证明基于~Leray-Schauder~不动点定理.\\  相似文献   

19.
本文考虑了单位球~$\Omega=\{x\in\mathbb{R}^N:~|x|<1\}$~上含梯度项的椭圆边值问题 \[ \begin{cases} -\triangle u=f(|x|,u,|\nabla u|),\quad x\in \Omega,\u|_{\partial\Omega}=0\\end{cases} \] 正径向解的存在性,~其中~$N\geq2$,~$f:[0,1]\times\mathbb{R}^{+}\times\mathbb{R}^{+}\rightarrow\mathbb{R^{+}}$~连续.~在~$f(r,\xi,\eta)$~满足一些不等式条件下,~应用~Leray-Schauder~不动点定理,~获得了该问题正径向解的存在性结果.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号