共查询到20条相似文献,搜索用时 15 毫秒
1.
采用层-层自组装法制备了前驱体RGO/Ni-Co@Ni-foam(泡沫镍负载石墨烯/镍-钴金属化合物),并在高温下煅烧得到RGO/NiCo_2O_4@Ni-foam复合电极材料。运用X射线衍射仪、扫描电子显微镜以及能谱仪对多孔RGO/NiCo_2O_4@Ni-foam复合材料进行结构表征,并通过循环伏安、恒流充放电等测试方法考察了其作为电极材料的电化学性能。结果表明,制备的多孔RGO/NiCo_2O_4@Ni-foam复合电极材料的比电容在电流密度为0.5A/g时可达到444F/g,并且在经过1 000次循环实验后,比电容仍有342F/g。这表明多孔RGO/NiCo_2O_4@Ni-foam复合材料在超级电容器领域具有广阔的应用前景。 相似文献
2.
采用压片法制备超级电容器电极材料,通过扫描电镜和电化学工作站对MnO电极材料进行形貌和电化学表征.结果表明,在KOH电解液中,MnO电极材料具有良好的循环伏安、充放电以及交流阻抗等电化学特性,且具有较高的循环稳定性和比电容保持率. 相似文献
3.
采用固相合成法制备了MnO2超级电容器材料,并用X射线衍射(XRD)、循环伏安、交流阻抗、恒流充放电及循环寿命测试等方法对所制得的MnO2电极材料的结构和电化学特性进行了研究.结果表明所制备的MnO2为无定形结构,该电极材料在有机电解液1.0 mol·L-1 LiClO4/AN中比在1.0 mol·L-1 LiClO4/EC+DMC中有更好的电化学性能,电位窗口为0.1~1.1 V(vs.Ag),比电容达171.2 F/g,并具有良好的准电容特性.在1.0 mol·L-1 LiClO4/AN有机电解液中,该电极以1.0 mA/cm2充放电电流密度循环5 000次衰减仅为1.3%,显示了良好的循环寿命. 相似文献
4.
以Ag2 WO4为电化学活性材料,采用压片法制备超级电容器电极材料.通过X射线衍射仪、扫描电镜、电化学工作站等实验方法,辅以密度函数理论(DFT)计算,对Ag2 WO4电极材料进行表征.K+离子嵌入Ag2 WO4晶体在循环伏安模式下比电容最大能够达到1344.7 F·g-1;在恒流充放电模式下最大可达到182.0 F·... 相似文献
5.
6.
以泡沫镍为集流体,采用压片法,在8MPa压力下制备钴镍基一/二元超级电容器电极材料.通过电化学工作站测试样品的循环伏安、恒流充放电和交流阻抗等电化学性能.研究结果表明,钴镍基二元超级电容器电极材料的综合电化学性能高于相应的一元电极材料. 相似文献
7.
采用一种具有潜在应用价值的1-乙基-3-甲基咪唑六氟磷酸盐作超级电容器的电解液,与活性炭电极组装成模拟超级电容器,与其他两种有机电解液进行循环伏安、恒流充放电、交流阻抗等电化学性能的比较.结果显示,1-乙基-3-甲基咪唑六氟磷酸酸盐(FMI-PF6)在循环性能、恒流充放电及高电压放电等方面优于甲基三乙基铵六氟磷酸盐(N... 相似文献
8.
《牡丹江师范学院学报(自然科学版)》2018,(4)
采用粉末压片法,以泡沫镍为集流体,制备镍基超级电容器电极材料.在冷压压力为2~10 MPa时,采用扫描电镜观测样品的微观结构,以KOH溶液作为电解液,测试样品的循环伏安、恒流充放电、交流阻抗等电化学性能.研究结果表明:冷压压力对镍基超级电容器电极材料循环伏安特性、恒定电流充放电和交流阻抗的调控有积极的意义. 相似文献
9.
通过化学共沉淀法制备了不同组分镍钴层状双氢氧化物(NixCoy-LDHs),并通过X射线衍射、扫描电镜、透射电镜、循环伏安法、恒电流充放电及电化学交流阻抗等测试手段进一步研究了Ni2Co-LDHs材料的物相结构、表面形貌和电化学性能,探究电荷储存机理及计算扩散系数.结果表明:当镍钴物质的量之比为2∶1时,其组分Ni2Co-LDHs与其他2个组分(NiCo0.2-LDHs和NiCo-LDHs)相比,比容量最大;纳米片状形貌的Ni2Co-LDHs作为超级电容器电极材料表现出极好的电化学性能,其比容量最大值为2 037 F/g,较小的阻抗(0.21Ω/cm2)和良好的循环稳定性,经过近4 000周循环,比容量衰减约10%;Ni2Co-LDHs电极的还原反应过程为扩散控制电荷储存,扩散系数D为8.0×10-11 cm2/s,其氧化反应过程为混合储存机理,扩散系数D为4.2×10... 相似文献
10.
采用机械球磨法将竹炭和MnO2按不同比例复合,得到一系列不同配比的MnO2/竹炭电容器电极复合材料,对其进行扫描电子显微镜(SEM),X射线衍射(XRD)和热重分析(TG-DSC),并进行循环伏安和电化学充放电测试。结果发现,当MnO2在复合材料中的质量分数为1%时,电极比容量可以达到338 F/g,100次循环后维持在260 F/g,显示很好的电化学性能。 相似文献
11.
目的研究镍锰氧化物电极材料的形貌及相组成对超级电容器电化学性能的影响。方法分别采用模板法、水热法及旋转蒸发方法制备了不同形貌的镍锰氧化物,利用X射线衍射(XRD)、扫描电子显微镜(SEM)手段对材料的物相、晶体结构以及微观形貌进行表征,采用三电极体系测试其作为超级电容器电极材料的电化学性能。结果循环伏安和电化学性能循环测试结果表明,在0.1 A/g电流密度下,空心球、微米球及纳米颗粒3种不同形貌的镍锰氧化物电极材料的的放电容量分别是90.57,36.4和8.72 F/g。空心球状镍锰氧化物电极材料显示出较优异的电容特性。充放电循环1 000次后,其放电容量保持率为85.28%。结论独特的空心球状结构有利于增强电极材料的电化学性能。 相似文献
12.
壳聚糖是一类具备天然氮元素的海洋生物质,可作为制备超级电容器的前驱体,但溶解性质限制了其反应均匀性。本研究以壳聚糖为原料,利用自主研发的水解法制备壳寡糖均相溶液,作为前驱体制备超级电容器电极材料。实验采用了三电极体系对该电极材料多性能进行表征,包括循环性能、阻抗、元素分析、SEM、TEM、XRD等,探讨了水解工艺对电极材料综合性能的影响,并且与出发原料壳聚糖进行对比。结果表明:壳寡糖电极材料性能有了明显的提升,在电流密度为0.5 A g-1时比电容高达227.5 F g-1,具有优秀的循环稳定性,1000圈循环后比电容仍未有明显下降,且电极的膜阻抗和电荷转移电阻较小,说明该工艺制备的壳寡糖具有很好的超级电容器方面应用前景。 相似文献
13.
《四川理工学院学报(自然科学版)》2021,34(2)
将废旧轮胎热裂解得到炭黑,采用氢氧化钾(KOH)为活化剂,通过高温活化、浓硝酸(HNO_3)酸化处理成多孔活性炭,制备超级电容器电极材料。利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)和氮气吸脱附对材料的微观形貌、晶体结构以及比表面积、孔径分布进行分析,并通过电化学工作站CHI660E对热裂解炭黑电极材料的电化学性能进行测试。结果表明:利用KOH活化以及浓HNO3酸化所制备的电极材料具有较好的电化学性能,其在0.5 A/g的电流密度下的放电比容量达到160 F/g,在20 A/g的电流密度仍然有127 F/g的放电比容量,容量保持率为79%,表现出较好的倍率性能。 相似文献
14.
《河南大学学报(自然科学版)》2016,(3)
超级电容器因其高功率密度、长循环寿命,兼具传统电容高功率密度和电池高能量密度的优点,引起了人们的极大关注.超级电容器电极材料种类繁多,按储能原理可以分为双电层超级电容器、赝电容超级电容器和电池型超级电容器三类.双电层超级电容器介绍了几类主流的双电层电极材料的研究现状,同时很多研究者将赝电容电极材料和电池型电极材料混为一谈,本文对这两类材料的不同从原理上进行了区分,介绍各自的代表性材料,最后展望了超级电容器电极材料未来发展趋势. 相似文献
15.
采用泡沫镍作为镍源和电流收集体,通过水热法合成了NF@Ni_3S_2复合电极材料.利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X光电子能谱(XPS)、比表面积和电化学表征对电极材料进行分析和表征.研究结果表明,合成的NF@Ni_3S_2复合电极展示了较高的电化学性能.独特松树状三维结构具有较高的比表面积,能与电解液充分接触,OH~-离子能够快速进入电极内部,有效地提升电极/电解质界面氧化还原反应和电子传输速度.NF@Ni_3S_2电极材料具有较高的面积比电容,在电流密度为1 A·cm~(-2)时的电容为1 441.90 mF·cm~(-2). 相似文献
16.
超级电容器电极材料的结构设计 总被引:1,自引:0,他引:1
超级电容器由于具有功率密度大和循环寿命长的优势受到了广泛的关注.电极材料是超级电容器的核心部分,是发展高性能超级电容器的关键要素.电极材料的组成、晶体结构、微纳结构形态等对其电化学性能具有重大影响.赝电容电极材料的性能与晶体内部的孔道结构密切相关,具有大孔道的电极材料其比容量明显高于只含有小孔道的电极材料.合理调控电极材料微纳结构形态如设计多孔结构、中空结构有利于增大电极的电化学活性表面,进而获得更多的电荷存储量,是提高储能性能的有效途径之一.将赝电容电极材料与导电基体复合生长可以提高材料整体的电导率,进而提高材料的比容量与倍率性能.通过对超级电容器电极材料结构的合理设计进而实现其储能性能的提高已经成为电化学储能领域的研究热点,对于推动超级电容器的发展具有重要意义. 相似文献
17.
18.
《太原科技大学学报》2018,(6)
超级电容器作为一种新型的电化学储能元件,以充放电效率高、循环寿命长等优点引起研究者的大量关注,而电极材料是决定超级电容器性能的一个关键性因素。常见的电极材料主要有:碳材料、金属化合物材料和导电聚合物材料三大类。当它们单独作为超级电容器电极材料时,碳材料展现高功率密度和优异的循环稳定性,但其比电容较低;而金属化合物和导电聚合物材料具有高比电容,但由于它们导电性差,致使其循环稳定性和倍率性能较差。因此,超级电容器电极材料的研究关注点是碳材料与其他材料组成复合材料,以制备出兼具高比电容、良好循环稳定性和倍率性能的超级电容器电极材料。 相似文献
19.
超级电容器电极材料的研究进展 总被引:1,自引:0,他引:1
超级电容器是介于传统电容器和蓄电池之间的一种新型储能装置。简述了不同电极材料的超级电容器的工作原理,综述了近年来超级电容器电极材料的研究进展以及现状,并探讨了其发展方向和研究重点。 相似文献
20.
超级电容器用活性炭电极的制备及电化学性能研究 总被引:2,自引:0,他引:2
以石油焦为原料,采用KOH活化法制备比表面积为2 170 m^2/g的高比表面积活性炭,采用该材料作为电极材料,组装成超级电容器,并对它进行了恒电流充放电实验、循环伏安实验和交流阻抗等实验,结果表明,制备的活性炭作电极材料组装的电容器具有良好的电化学性能. 相似文献