首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
分析了基本蚁群算法易出现早熟停滞现象的原因.对基本蚁群算法进行改进,在原有算法的基础上引入最优最差信息素更新策略和局部最优搜索策略,从而扩大可行解的的范围,避免了算法过早停滞,同时加快算法的收敛速度,使得改进后的蚁群算法解的性能得到较大的提高.最后,以三种旅行商问题为例进行仿真,结果表明该算法能较快地收敛到全局最优解而且具有较好的发现解的能力.  相似文献   

2.
蚁群算法是一种新的启发算法,能够有效的解决组合优化问题.本文通过蚁群算法在旅行商问题中的应用,分析了蚁群算法的设计思想.蚁群算法把可行解表示为蚂蚁走过的路线,通过信息素传递路线优劣的信息,并通过反馈机制强化这些信息,吸引蚂蚁向好的可行解靠拢,从而较快地找到最优解.并且所采用的方法对解决同类组合优化问题也有一定的启发.  相似文献   

3.
用蚁群算法求解旅行商问题   总被引:1,自引:1,他引:0  
介绍了一种用于解决复杂优化问题的新的启发式算法--蚁群算法.阐述了该算法的基本原理、算法模型和在旅行商问题中的具体应用过程.研究表明该算法具有并行性,鲁棒性等优良性质.  相似文献   

4.
用量子蚁群算法求解大规模旅行商问题   总被引:1,自引:2,他引:1  
针对旅行商问题(TSP),提出了一种新的混合量子优化算法——量子蚁群算法.量子蚁群算法采用量子比特的概率幅表示蚂蚁的当前位置,采用量子旋转门更新蚂蚁的位置,选取国际通用的TSP实例库中多个实例进行测试.仿真实验表明,该算法具有很好的精确度和鲁棒性,可使搜索空间加倍,比传统的蚁群算法具有更好的种群多样性.  相似文献   

5.
蚁群算法是求解TSP问题的一个性能较好的仿生型的智能优化算法,但存在着运行时间长、容易陷入局部最优的缺点,导致停滞现象的出现,找不到全局最优解.实验表明,使用候选集合策略和局部搜索策略能提高算法所求得的解的质量,同时也会明显加快求解的速度.使用信息素变异和重新初始化策略,能增加路径探索的多样性,使算法对搜索空间的探索始终保持在一个合理的水平上,有效地避免算法陷入停滞状态,从而找到全局最优解.  相似文献   

6.
基于模式求解旅行商问题的蚁群算法   总被引:8,自引:0,他引:8  
群体智能已经被广泛应用于分布式控制、调度、优化等领域.其中蚁群算法已经成为该领域的一个研究热点.在蚁群算法的基础上针对旅行商问题(TSP),首先提出了小窗口蚁群算法,提高初始解的质量,然后与基于模式的蚁群算法相结合,通过提取模式,改变计算粒度,缩短计算时间,提高计算精度.实验结果表明该算法有较好的效果.  相似文献   

7.
8.
【目的】量子蚁群算法是一种常见的智能仿生算法,广泛的应用在数学优化、工程技术等领域。该算法在求解旅行商问题时也表现出良好的效果,但当城市规模变大时求解该问题就会出现算法收敛速度慢、早熟、全局寻优能力较弱等问题,为了解决这方面的问题,提出了一种优化的量子蚁群算法。【方法】将部分量子蚁群算法中信息素更新机制与量子旋转角更新机制结合,改进量子选择策略,并将轮盘赌法应用在状态转移规则模型中。【结果】分别使用标准库中的样本和自定义样本,利用Python平台进行实验仿真,通过与其他算法进行比较,并在给出了详细的对比过程。在求解旅行商问题时,提出的算法在最优值差别不大的情况下,减少了早熟,大幅度提高了算法的收敛速度。【结论】提出的算法是有效的,具有一定的实践意义。  相似文献   

9.
蚁群算法是一种新型仿生算法,但存在搜索时间长,收敛速度慢,易陷入局部最优等缺点。本文提出了一种基于旅行商问题(TSP)几何结构的蚁群算法,利用象限邻居表构造候选集和对偶限象邻居的方法初始化信息素,用以克服上述缺陷。通过对TSP的仿真,结果表明新算法大大缩小了其搜索范围,提高了搜索精确度并减少了搜索时间。  相似文献   

10.
在大规模的TSP求解中,单一的使用蚁群算法会面临优化性能和时间性能这一问题,因此,应先把大规模的TSP按基于距离阈值的近邻聚类分区法划为小规模TSP优化问题来并行求解,再把各子区域中心找一条最佳路径连接起来.  相似文献   

11.
基于蚂蚁算法的混合方法求解旅行商问题   总被引:18,自引:3,他引:18  
通过介绍蚂蚁觅食过程中最短路径的搜索策略,给出蚂蚁算法在旅行商问题中的应用,并加入3-opt方法和去交叉策略对问题求解进行局部优化.实验结果证明了其有效性.  相似文献   

12.
基于蚁群算法的Traveling Salesman Problem研究   总被引:1,自引:0,他引:1  
本文介绍了一种求解复杂组合优化问题的新的拟生态算法——蚁群算法.阐述了该算法的基本原理以及蚁群算法在TSP问题上的应用,并提出了改进算法,使得算法有更好的全局性.  相似文献   

13.
孟岩  刘希玉  李镇 《山东科学》2007,20(5):48-52
针对模糊C-均值本文提出将基于蚁群算法的模糊聚类算法应用于文本聚类中,聚类采用二级结构,蚁群算法(ACA)作为一级结构,模糊C-均值聚类FCM用于二级结构。将此算法对文本集合进行聚类实验,并用分离系数、分离熵来判断模糊划分的效果,实验结果表明,与FCM相比,该算法具有较好的聚类效果。  相似文献   

14.
基于改进蚁群算法的TSP问题研究   总被引:2,自引:0,他引:2  
由于基本蚁群系统算法没有考虑节点位置,对所有的解采用相同信息素蒸发准则,使算法收敛速度慢,易于停滞,且易收敛于局部最优,为了克服这一缺点,提出了基于距离导引函数构建解,同时采用分级蒸发参数控制蒸发信息素,对蚁群系统算法进行改进,通过仿真实验得到本文算法比基本蚁群系统算法更好的解,且解的性能更好.  相似文献   

15.
基于蚁群算法的模糊C均值聚类   总被引:2,自引:0,他引:2  
基于蚁t群算法的FCM聚类算法,利用蚁群算法能够得到局部极值的能力,对初始化非常敏感的初始值聚类教和模糊中心点处理.并对基本蚁群算法模型稍加修改,将其应用于模糊聚粪问题.  相似文献   

16.
针对中国邮路问题中先寻找奇数度结点,再进行奇数度结点之间路线添加的问题,引入了蚂蚁算法,通过其随机概率选择和最短路线激励策略,有效地解决了结点之间的最短路线的问题,避免了常规方法中必须先进行奇数度结点匹配的问题.算法易于实现,实验仿真表明算法耗时短、效率高.  相似文献   

17.
基于蚁群聚类算法的模糊神经网络   总被引:1,自引:0,他引:1  
提出了一种基于蚁群聚类的模糊神经网络算法,神经网络采用RBF网络结点结构,聚类采用二级结构蚁群聚类算法作为一级聚类而模糊C-均值聚类(FCM)用于二级聚类。将上述聚类方法用于模糊神经网络构建中,仿真结果表明具有并行实时性、聚类能力强的特点。  相似文献   

18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号