共查询到17条相似文献,搜索用时 78 毫秒
1.
重叠社区发现技术对于分析网络社区间关系具有重要意义,本文提出了基于Louvain重叠社区发现算法,该算法在Louvain算法的基础上使用模块度Q的增益度函数dq判断节点是否具有重叠性,并且发现重叠社区;设计实验验证该算法,使用经典数据集American College Football对该算法与常用重叠社区发现算法CPM、LFM和COPRA进行实验对比,结果表明:增益度函数dq能判断重叠节点,且通过找到社会网络中的重叠节点发现重叠社区;该算法在重叠模块度EQ上比CPM、LFM和COPRA算法分别提高17.05%、12.81%和9.45%,在运算时间上比CPM算法、COPRA算法分别增加了12.62%、7.15%,比LFM算法减少了23.06%,表明在综合重叠模块度EQ与算法时间上,本文基于Louvain重叠社区发现算法都优于其他的算法。 相似文献
2.
重叠社区发现是复杂网络研究的重要课题.提出一种基于标签传播的重叠社区发现算法.首先利用标签传播算法得到初始无重叠社区划分结果,之后通过设计新的重叠节点识别算法确定重叠节点,最后再根据重叠节点的识别结果对社区进行合并从而得到最终的重叠社区划分结果.该算法克服了已有算法重叠节点占比过大的弊端.为验证算法的有效性,在LFR人工数据集、3个标准公开测试集以及真实的大豆基因共表达网络上进行实验,并与已有算法进行对比.实验结果表明,该算法性能明显优于对比算法,极大地改善了重叠节点比重过大问题. 相似文献
3.
4.
当原图转换成边图后,在边图上进行社区发现可以天然地得到重叠社区,然而得到的社区往往相互大面积重叠,甚至相互包含,导致社区模块性质量较低.针对这一问题,在得到边图下重叠社区发现算法结果的基础上,我们将进一步以优化重叠社区模块化质量函数为标准进行社区合并,以获得高质量的重叠社区.本文首先提出一种描述社区间重叠程度的重叠系数,并基于此进一步提出一种构建带权社区图的启发式方法,能够快速有效地完成社区合并的过程.在人工生成网络与真实世界网络上的实验,进一步验证了该算法能够在不削弱边图方法速度优势的前提下,提高高度重叠社区的模块性. 相似文献
5.
发现复杂网络中的重叠社区是目前复杂网络分析的重要内容。选择社区代表性强的节点作为种子节点进行扩展是基于种子扩展策略重叠社区发现算法的关键,提出了一种基于度信息和邻域连通性的节点邻域中心性度量指标,并在此基础上提出了一种基于局部邻域连通性的重叠社区发现算法(Local Neighbor-hood Connectivitybased overlapping community detection Algorithm,LNCA)。首先计算每个节点的局部邻域连通熵和邻域中心性cc,选择中心性高的节点作为种子节点;然后采用带重启的随机游走策略扩展种子节点并得到初始社区;最后合并重叠度较大的社区得到最终社区发现结果。在6个带真实社区标签的网络和9个无真实社区标签的网络上,与SLP A、DEMON、CPM、NodePerception、EgoNetworks、EgonetSplitter等6个经典重叠社区发现算法进行比较,结果表明,在带标签网络上,LNCA算法在重叠NMI和F1分数上优于多数对比算法,可得到与网络真实社区更匹配的社区结... 相似文献
6.
《福建师范大学学报(自然科学版)》2017,(2)
针对邻居节点选择规则过于简单的传统标签传播算法容易导致奇异解问题,从而难以适应大型复杂网络的社区挖掘,提出了基于日常生活选举模式的标签传播算法VLPNO,重新定义节点标签传播规则,使其在传播迭代过程中能依照竞选的方式自主地更新标签,进而将网络划分为由领导者和跟随者组成的社区.实验结果表明,与LPA、SLPA与BMLPA相比较,VLPNO算法能够更快速有效地发现与真实网络社区更相吻合的社区结构. 相似文献
7.
8.
《南京师大学报(自然科学版)》2018,(3)
协同过滤算法已成为用来为用户提供个性化服务以处理海量信息最常用的方法之一.本文提出一种基于重叠社区发现的社会网络推荐算法,该算法同时考虑了群组用户的兴趣以及他们复杂的内部关系,通过将重叠社区发现算法和基于模型的社会推荐算法进行创新融合,以实现重叠社区的发现、建立,和基于社区的智能推荐.基于开放数据集,本文设计了一系列相关实验以验证算法的有效性和准确性.实验结果表明本文提出的算法可以实现高效且准确的社会网络推荐. 相似文献
9.
《山东师范大学学报(自然科学版)》2016,(2)
社区发现是复杂网络研究的基础,其目的是发现网络的真实结构,对于分析复杂网络的拓扑结构、理解其功能和寻找其潜在的性质具有重要的意义.Palla,Yong和James等人分别提出了CPM、LINK算法,此类算法基于网络拓扑结构或边密度发现复杂网络中的社区,性能较好,但不足是计算出的社区存在过度重叠问题.如何设计新算法,避免社区发现的过度重叠问题,是一个亟待解决的重要问题.本文基于加权边相似度,提出了一种社区发现算法LINKw,可以高效发现社区结构,与其他算法相比,本算法能更好地解决社区过度重叠问题. 相似文献
10.
《云南大学学报(自然科学版)》2020,(1)
针对基于标签传播的重叠社区发现算法中出现的随机性和不稳定性问题,提出了一种新的基于节点亲密度的标签传播算法.首先,利用网络的局部信息,以模块度增量为依据,对网络中节点进行粗聚类,实现对节点的初步划分;然后,定义节点亲密度函数进行标签的更新和选择.在人工和真实网络上对算法进行验证.结果表明,该算法能有效地提高大规模重叠社区检测的准确性和稳定性,并且具有近乎线性的时间复杂度. 相似文献
11.
针对现有静态网络社区发现算法的失真和动态网络社区发现算法时间复杂度较高的问题,本文提出了一种动态网络中的重叠社区发现算法。在网络中,边介数最大的边或分割介数最大的节点是网络中的关键边或点,即联系最不紧密的边或节点,因此,该算法利用去除最大边介数的边和分裂最大分割介数的节点的方法,并将网络社区的动态变化和重叠性考虑在内进行社区发现。最后利用模块度对社区发现进行控制,使发现的社区结构更加合理。 相似文献
12.
一种基于熵的超网络重叠社团检测算法 总被引:1,自引:0,他引:1
研究了超网络的社团划分问题。超网络是实际应用中的超图,而超图则是一种广义上的图,它的一条超边可以连接任意多个顶点。提出了一个基于熵的超网络社团检测算法,该算法是对Cha等人的算法的推广,能够检测出重叠社团。将这两种算法应用到了中国大陆图论科研合作超网络中,对结果进行了分析和比较,认为提出的算法是有效的。 相似文献
13.
在众多社区挖掘算法中,标签传播算法因为接近线性时间复杂度被广泛应用,但其也存在大量随机性,稳定性差的问题,采取一种新型的多标签策略解决重叠社区挖掘问题,并根据节点度减少初始标签赋予量的方法提升了算法的稳定性. 相似文献
14.
基于极大团扩展的蛋白质复合物识别算法 总被引:1,自引:0,他引:1
针对蛋白质复合物识别工具CFinder容易识别出超大复合物的缺陷,提出一种基于极大团扩展的蛋白质复合物识别算法(IPC-MCE)。将极大团看作蛋白质复合物的核,通过考查核的邻居顶点与核内顶点的作用概率决定邻居顶点是否属于该复合物。基于酵母蛋白质相互作用网络平台的实验结果表明:与CFinder相比,提出的IPC-MCE算法在相同条件下能够更精确地标识已知蛋白质复合物;在最优参数设置下,IPC-MCE算法标识的已知蛋白质复合物数量是CFinder标识数量的2倍多,说明IPC-MCE算法具有更强的蛋白质复合物识别能力。 相似文献
15.
为更准确地识别出夜间重叠番茄,提出一种基于重叠边缘检测的夜间重叠番茄识别算法.该算法采用基于OTSU法进行图像分割,利用Canny算子进行边缘检测,并从中识别出重叠边缘,进一步基于重叠边缘应用一种距离就近法判断重叠番茄前后位置关系,最后基于圆拟合对重叠番茄中前未被遮挡番茄进行识别.试验结果表明:无枝叶遮挡时,前后位置关系判断正确率为96%,前未被遮挡番茄识别正确率为91.7%;当有枝叶遮挡时,前后位置关系判断正确率为90%;当被遮挡率低于50%时,前未被遮挡番茄识别正确率为83.3%;该算法可实现夜间双果重叠番茄前后位置关系判断及前未被遮挡番茄识别. 相似文献
16.
主要研究基于扫描数据自动识别零件轮廓特征的方法与技术.首先给出了零件轮廓特征自动识别的工作流程,然后提出了零件轮廓特征自动识别的原理与算法,最后通过具体实例验证了本方法的优点及可行性。 相似文献
17.
杨艳 《哈尔滨商业大学学报(自然科学版)》2009,25(1)
采用Ontology作为一种能在知识和语义层次上描述信息的概念建模工具,根据Ontology具有的良好的概念层次结构和对逻辑推理功能的支持,提出新的概念匹配算法,突破了传统的基于关键字的检索技术,把查询请求定位到相关的社区,因此能得到满意的结果. 相似文献