首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spin crossover and iron-rich silicate melt in the Earth's deep mantle   总被引:1,自引:0,他引:1  
Nomura R  Ozawa H  Tateno S  Hirose K  Hernlund J  Muto S  Ishii H  Hiraoka N 《Nature》2011,473(7346):199-202
A melt has greater volume than a silicate solid of the same composition. But this difference diminishes at high pressure, and the possibility that a melt sufficiently enriched in the heavy element iron might then become more dense than solids at the pressures in the interior of the Earth (and other terrestrial bodies) has long been a source of considerable speculation. The occurrence of such dense silicate melts in the Earth's lowermost mantle would carry important consequences for its physical and chemical evolution and could provide a unifying model for explaining a variety of observed features in the core-mantle boundary region. Recent theoretical calculations combined with estimates of iron partitioning between (Mg,Fe)SiO(3) perovskite and melt at shallower mantle conditions suggest that melt is more dense than solids at pressures in the Earth's deepest mantle, consistent with analysis of shockwave experiments. Here we extend measurements of iron partitioning over the entire mantle pressure range, and find a precipitous change at pressures greater than ~76?GPa, resulting in strong iron enrichment in melts. Additional X-ray emission spectroscopy measurements on (Mg(0.95)Fe(0.05))SiO(3) glass indicate a spin collapse around 70?GPa, suggesting that the observed change in iron partitioning could be explained by a spin crossover of iron (from high-spin to low-spin) in silicate melt. These results imply that (Mg,Fe)SiO(3) liquid becomes more dense than coexisting solid at ~1,800?km depth in the lower mantle. Soon after the Earth's formation, the heat dissipated by accretion and internal differentiation could have produced a dense melt layer up to ~1,000?km in thickness underneath the solid mantle. We also infer that (Mg,Fe)SiO(3) perovskite is on the liquidus at deep mantle conditions, and predict that fractional crystallization of dense magma would have evolved towards an iron-rich and silicon-poor composition, consistent with seismic inferences of structures in the core-mantle boundary region.  相似文献   

2.
Shim SH  Duffy TS  Shen G 《Nature》2001,411(6837):571-574
The 660-km seismic discontinuity in the Earth's mantle has long been identified with the transformation of (Mg,Fe)2SiO4 from gamma-spinel (ringwoodite) to (Mg,Fe)SiO3-perovskite and (Mg,Fe)O-magnesiowüstite. This has been based on experimental studies of materials quenched from high pressure and temperature, which have shown that the transformation is consistent with the seismically observed sharpness and the depth of the discontinuity at expected mantle temperatures. But the first in situ examination of this phase transformation in Mg2SiO4 using a multi-anvil press indicated that the transformation occurs at a pressure about 2 GPa lower than previously thought (equivalent to approximately 600 km depth) and hence that it may not be associated with the 660-km discontinuity. Here we report the results of an in situ study of Mg2SiO4 at pressures of 20-36 GPa using a combination of double-sided laser-heating and synchrotron X-ray diffraction in a diamond-anvil cell. The phase transformation from gamma-Mg2SiO4 to MgSiO3-perovskite and MgO (periclase) is readily observed in both the forward and reverse directions. In contrast to the in situ multi-anvil-press study, we find that the pressure and temperature of the post-spinel transformation in Mg2SiO4 is consistent with seismic observations for the 660-km discontinuity.  相似文献   

3.
Chudinovskikh L  Boehler R 《Nature》2001,411(6837):574-577
It had long been accepted that the 400-km seismic discontinuity in the Earth's mantle results from the phase transition of (Mg,Fe)2-SiO4-olivine to its high-pressure polymorph beta-spinel (wadsleyite), and that the 660-km discontinuity results from the breakdown of the higher-pressure polymorph gamma-spinel (ringwoodite) to MgSiO3-perovskite and (Mg,Fe)O-magnesiowüstite. An in situ multi-anvil-press X-ray study indicated, however, that the phase boundary of the latter transition occurs at pressures 2 GPa lower than had been found in earlier studies using multi-anvil recovery experiments and laser-heated diamond-anvil cells. Such a lower-pressure phase boundary would be irreconcilable with the accuracy of seismic measurements of the 660-km discontinuity, and would thus require a mineral composition of the mantle that is significantly different from what is currently thought. Here, however, we present measurements made with a laser-heated diamond-anvil cell which indicate that gamma-Mg2SiO4 is stable up to pressure and temperature conditions equivalent to 660-km depth in the Earth's mantle (24 GPa and 1,900 K) and then breaks down into MgSiO3-perovskite and MgO (periclase). We paid special attention to pressure accuracy and thermal pressure in our experiments, and to ensuring that our experiments were performed under nearly hydrostatic, inert pressure conditions using a variety of heating methods. We infer that these factors are responsible for the different results obtained in our experiments compared to the in situ multi-anvil-press study.  相似文献   

4.
Cordier P  Ungár T  Zsoldos L  Tichy G 《Nature》2004,428(6985):837-840
Seismic anisotropy provides an important observational constraint on flow in the Earth's deep interior. The quantitative interpretation of anisotropy, however, requires knowledge of the slip geometry of the constitutive minerals that are responsible for producing rock fabrics. The Earth's lower mantle is mostly composed of (Mg, Fe)SiO3 perovskite, but as MgSiO3 perovskite is not stable at high temperature under ambient pressure, it has not been possible to investigate its mechanical behaviour with conventional laboratory deformation experiments. To overcome this limitation, several attempts were made to infer the mechanical properties of MgSiO3 perovskite on the basis of analogue materials. But perovskites do not constitute an analogue series for plastic deformation, and therefore the direct investigation of MgSiO3 perovskite is necessary. Here we have taken advantage of recent advances in experimental high-pressure rheology to perform deformation experiments on coarse-grained MgSiO3 polycrystals under pressure and temperature conditions of the uppermost lower mantle. We show that X-ray peak broadening measurements developed in metallurgy can be adapted to low-symmetry minerals to identify the elementary deformation mechanisms activated under these conditions. We conclude that, under uppermost lower-mantle conditions, MgSiO3 perovskite deforms by dislocation creep and may therefore contribute to producing seismic anisotropy in rocks at such depths.  相似文献   

5.
Oganov AR  Ono S 《Nature》2004,430(6998):445-448
The Earth's lower mantle is believed to be composed mainly of (Mg,Fe)SiO3 perovskite, with lesser amounts of (Mg,Fe)O and CaSiO3 (ref. 1). But it has not been possible to explain many unusual properties of the lowermost approximately 150 km of the mantle (the D" layer) with this mineralogy. Here, using ab initio simulations and high-pressure experiments, we show that at pressures and temperatures of the D" layer, MgSiO3 transforms from perovskite into a layered CaIrO3-type post-perovskite phase. The elastic properties of the post-perovskite phase and its stability field explain several observed puzzling properties of the D" layer: its seismic anisotropy, the strongly undulating shear-wave discontinuity at its top and possibly the anticorrelation between shear and bulk sound velocities.  相似文献   

6.
The oxidation state recorded by rocks from the Earth's upper mantle can be calculated from measurements of the distribution of Fe3+ and Fe2+ between the constituent minerals. The capacity for minerals to incorporate Fe3+ may also be a significant factor controlling the oxidation state of the mantle, and high-pressure experimental measurements of this property might provide important insights into the redox state of the more inaccessible deeper mantle. Here we show experimentally that the Fe3+ content of aluminous silicate perovskite, the dominant lower-mantle mineral, is independent of oxygen fugacity. High levels of Fe3+ are present in perovskite even when it is in chemical equilibrium with metallic iron. Silicate perovskite in the lower mantle will, therefore, have an Fe3+/total Fe ratio of at least 0.6, resulting in a whole-rock ratio of over ten times that of the upper mantle. Consequently, the lower mantle must either be enriched in Fe3+ or Fe3+ must form by the disproportionation of Fe2+ to produce Fe3+ plus iron metal. We argue that the lower mantle contains approximately 1 wt% of a metallic iron-rich alloy. The mantle's oxidation state and siderophile element budget have probably been influenced by the presence of this alloy.  相似文献   

7.
Oganov AR  Martonák R  Laio A  Raiteri P  Parrinello M 《Nature》2005,438(7071):1142-1144
The post-perovskite phase of (Mg,Fe)SiO3 is believed to be the main mineral phase of the Earth's lowermost mantle (the D' layer). Its properties explain numerous geophysical observations associated with this layer-for example, the D' discontinuity, its topography and seismic anisotropy within the layer. Here we use a novel simulation technique, first-principles metadynamics, to identify a family of low-energy polytypic stacking-fault structures intermediate between the perovskite and post-perovskite phases. Metadynamics trajectories identify plane sliding involving the formation of stacking faults as the most favourable pathway for the phase transition, and as a likely mechanism for plastic deformation of perovskite and post-perovskite. In particular, the predicted slip planes are {010} for perovskite (consistent with experiment) and {110} for post-perovskite (in contrast to the previously expected {010} slip planes). Dominant slip planes define the lattice preferred orientation and elastic anisotropy of the texture. The {110} slip planes in post-perovskite require a much smaller degree of lattice preferred orientation to explain geophysical observations of shear-wave anisotropy in the D' layer.  相似文献   

8.
Wookey J  Stackhouse S  Kendall JM  Brodholt J  Price GD 《Nature》2005,438(7070):1004-1007
Constraining the chemical, rheological and electromagnetic properties of the lowermost mantle (D') is important to understand the formation and dynamics of the Earth's mantle and core. To explain the origin of the variety of characteristics of this layer observed with seismology, a number of theories have been proposed, including core-mantle interaction, the presence of remnants of subducted material and that D' is the site of a mineral phase transformation. This final possibility has been rejuvenated by recent evidence for a phase change in MgSiO3 perovskite (thought to be the most prevalent phase in the lower mantle) at near core-mantle boundary temperature and pressure conditions. Here we explore the efficacy of this 'post-perovskite' phase to explain the seismic properties of the lowermost mantle through coupled ab initio and seismic modelling of perovskite and post-perovskite polymorphs of MgSiO3, performed at lowermost-mantle temperatures and pressures. We show that a post-perovskite model can explain the topography and location of the D' discontinuity, apparent differences in compressional- and shear-wave models and the observation of a deeper, weaker discontinuity. Furthermore, our calculations show that the regional variations in lower-mantle shear-wave anisotropy are consistent with the proposed phase change in MgSiO3 perovskite.  相似文献   

9.
Murakami M  Ohishi Y  Hirao N  Hirose K 《Nature》2012,485(7396):90-94
The determination of the chemical composition of Earth's lower mantle is a long-standing challenge in earth science. Accurate knowledge of sound velocities in the lower-mantle minerals under relevant high-pressure, high-temperature conditions is essential in constraining the mineralogy and chemical composition using seismological observations, but previous acoustic measurements were limited to a range of low pressures and temperatures. Here we determine the shear-wave velocities for silicate perovskite and ferropericlase under the pressure and temperature conditions of the deep lower mantle using Brillouin scattering spectroscopy. The mineralogical model that provides the best fit to a global seismic velocity profile indicates that perovskite constitutes more than 93 per cent by volume of the lower mantle, which is a much higher proportion than that predicted by the conventional peridotitic mantle model. It suggests that the lower mantle is enriched in silicon relative to the upper mantle, which is consistent with the chondritic Earth model. Such chemical stratification implies layered-mantle convection with limited mass transport between the upper and the lower mantle.  相似文献   

10.
11.
A R Oganov  J P Brodholt  G D Price 《Nature》2001,411(6840):934-937
The temperature anomalies in the Earth's mantle associated with thermal convection can be inferred from seismic tomography, provided that the elastic properties of mantle minerals are known as a function of temperature at mantle pressures. At present, however, such information is difficult to obtain directly through laboratory experiments. We have therefore taken advantage of recent advances in computer technology, and have performed finite-temperature ab initio molecular dynamics simulations of the elastic properties of MgSiO3 perovskite, the major mineral of the lower mantle, at relevant thermodynamic conditions. When combined with the results from tomographic images of the mantle, our results indicate that the lower mantle is either significantly anelastic or compositionally heterogeneous on large scales. We found the temperature contrast between the coldest and hottest regions of the mantle, at a given depth, to be about 800 K at 1,000 km, 1,500 K at 2,000 km, and possibly over 2,000 K at the core-mantle boundary.  相似文献   

12.
The effect of water on the electrical conductivity of olivine   总被引:4,自引:0,他引:4  
Wang D  Mookherjee M  Xu Y  Karato S 《Nature》2006,443(7114):977-980
It is well known that water (as a source of hydrogen) affects the physical and chemical properties of minerals--for example, plastic deformation and melting temperature--and accordingly plays an important role in the dynamics and geochemical evolution of the Earth. Estimating the water content of the Earth's mantle by direct sampling provides only a limited data set from shallow regions (<200 km depth). Geophysical observations such as electrical conductivity are considered to be sensitive to water content, but there has been no experimental study to determine the effect of water on the electrical conductivity of olivine, the most abundant mineral in the Earth's mantle. Here we report a laboratory study of the dependence of the electrical conductivity of olivine aggregates on water content at high temperature and pressure. The electrical conductivity of synthetic polycrystalline olivine was determined from a.c. impedance measurements at a pressure of 4 GPa for a temperature range of 873-1,273 K for water contents of 0.01-0.08 wt%. The results show that the electrical conductivity is strongly dependent on water content but depends only modestly on temperature. The water content dependence of conductivity is best explained by a model in which electrical conduction is due to the motion of free protons. A comparison of the laboratory data with geophysical observations suggests that the typical oceanic asthenosphere contains approximately 10(-2) wt% water, whereas the water content in the continental upper mantle is less than approximately 10(-3) wt%.  相似文献   

13.
Iitaka T  Hirose K  Kawamura K  Murakami M 《Nature》2004,430(6998):442-445
MgSiO3 perovskite has been assumed to be the dominant component of the Earth's lower mantle, although this phase alone cannot explain the discontinuity in seismic velocities observed 200-300 km above the core-mantle boundary (the D" discontinuity) or the polarization anisotropy observed in the lowermost mantle. Experimental and theoretical studies that have attempted to attribute these phenomena to a phase transition in the perovskite phase have tended to simply confirm the stability of the perovskite phase. However, recent in situ X-ray diffraction measurements have revealed a transition to a 'post-perovskite' phase above 125 GPa and 2,500 K--conditions close to those at the D" discontinuity. Here we show the results of first-principles calculations of the structure, stability and elasticity of both phases at zero temperature. We find that the post-perovskite phase becomes the stable phase above 98 GPa, and may be responsible for the observed seismic discontinuity and anisotropy in the lowermost mantle. Although our ground-state calculations of the unit cell do not include the effects of temperature and minor elements, they do provide a consistent explanation for a number of properties of the D" layer.  相似文献   

14.
Brodholt JP 《Nature》2000,407(6804):620-622
Although aluminium is the fifth most abundant element in the Earth's mantle, its effect on the physical properties of perovskite, the main mineral phase in the lower mantle, has largely been ignored. It is becoming clear, however, that many properties of MgSiO3 perovskites are remarkably sensitive to small amounts of aluminium. In particular, perovskite with only 5 wt% Al2O3 has a bulk modulus 10% lower than that of the pure magnesian end-member. The increased compressibility may be due to the high concentrations of oxygen vacancies required to balance the charge of the aluminium; if so, this would have important consequences for the mantle, as aluminous perovskites could be weaker, have lower seismic velocities and be hosts for water. To test whether oxygen vacancies exist in aluminous perovskites, I have calculated the compressibility of end-member defect-bearing perovskites using ab initio methods. The results show that perovskites with oxygen vacancies do have significantly greater compressibilities than those without such vacancies. But the results also suggest that oxygen vacancies become unfavourable at high pressures, in which case only the physical properties of the shallow lower mantle would be affected by aluminium-with the deeper mantle retaining properties similar to those of aluminium-free perovskite.  相似文献   

15.
Song TR  Helmberger DV  Grand SP 《Nature》2004,427(6974):530-533
The seismic discontinuity at 410 km depth in the Earth's mantle is generally attributed to the phase transition of (Mg,Fe)2SiO4 (refs 1, 2) from the olivine to wadsleyite structure. Variation in the depth of this discontinuity is often taken as a proxy for mantle temperature owing to its response to thermal perturbations. For example, a cold anomaly would elevate the 410-km discontinuity, because of its positive Clapeyron slope, whereas a warm anomaly would depress the discontinuity. But trade-offs between seismic wave-speed heterogeneity and discontinuity topography often inhibit detailed analysis of these discontinuities, and structure often appears very complicated. Here we simultaneously model seismic refracted waves and scattered waves from the 410-km discontinuity in the western United States to constrain structure in the region. We find a low-velocity zone, with a shear-wave velocity drop of 5%, on top of the 410-km discontinuity beneath the northwestern United States, extending from southwestern Oregon to the northern Basin and Range province. This low-velocity zone has a thickness that varies from 20 to 90 km with rapid lateral variations. Its spatial extent coincides with both an anomalous composition of overlying volcanism and seismic 'receiver-function' observations observed above the region. We interpret the low-velocity zone as a compositional anomaly, possibly due to a dense partial-melt layer, which may be linked to prior subduction of the Farallon plate and back-arc extension. The existence of such a layer could be indicative of high water content in the Earth's transition zone.  相似文献   

16.
最近的计算机模拟分析和静高压实验结果都证实了钙钛矿顽火辉石Perovsk ite(M g-S iO3)在下地幔条件下发生了后钙钛矿相变(post—perovsk ite)。通过对顽火辉石动态高压实验Hugon iot数据进行分析,结果发现Perovsk ite(M gS iO3)在冲击压力为120G pa时(相当于下地幔压力)密度发生了系统性跳跃,增大了1.5%,于是我们推测顽火辉石在冲击波实验中也可能出现后钙钛矿相变,进一步的分析得到在2500K和109GPa条件下的C lapeyron斜率为4.0±0.4M Pa/k,其值和最近所得到的静高压实验、分子动力学模拟以及地球物理观测所得到的数据有很好的一致性。  相似文献   

17.
Rohrbach A  Schmidt MW 《Nature》2011,472(7342):209-212
Very low seismic velocity anomalies in the Earth's mantle may reflect small amounts of melt present in the peridotite matrix, and the onset of melting in the Earth's upper mantle is likely to be triggered by the presence of small amounts of carbonate. Such carbonates stem from subducted oceanic lithosphere in part buried to depths below the 660-kilometre discontinuity and remixed into the mantle. Here we demonstrate that carbonate-induced melting may occur in deeply subducted lithosphere at near-adiabatic temperatures in the Earth's transition zone and lower mantle. We show experimentally that these carbonatite melts are unstable when infiltrating ambient mantle and are reduced to immobile diamond when recycled at depths greater than ~250?kilometres, where mantle redox conditions are determined by the presence of an (Fe,Ni) metal phase. This 'redox freezing' process leads to diamond-enriched mantle domains in which the Fe(0), resulting from Fe(2+) disproportionation in perovskites and garnet, is consumed but the Fe(3+) preserved. When such carbon-enriched mantle heterogeneities become part of the upwelling mantle, diamond will inevitably react with the Fe(3+) leading to true carbonatite redox melting at ~660 and ~250 kilometres depth to form deep-seated melts in the Earth's mantle.  相似文献   

18.
The boundary between the Earth's metallic core and its silicate mantle is characterized by strong lateral heterogeneity and sharp changes in density, seismic wave velocities, electrical conductivity and chemical composition. To investigate the composition and properties of the lowermost mantle, an understanding of the chemical reactions that take place between liquid iron and the complex Mg-Fe-Si-Al-oxides of the Earth's lower mantle is first required. Here we present a study of the interaction between iron and silica (SiO2) in electrically and laser-heated diamond anvil cells. In a multianvil apparatus at pressures up to 140 GPa and temperatures over 3,800 K we simulate conditions down to the core-mantle boundary. At high temperature and pressures below 40 GPa, iron and silica react to form iron oxide and an iron-silicon alloy, with up to 5 wt% silicon. At pressures of 85-140 GPa, however, iron and SiO2 do not react and iron-silicon alloys dissociate into almost pure iron and a CsCl-structured (B2) FeSi compound. Our experiments suggest that a metallic silicon-rich B2 phase, produced at the core-mantle boundary (owing to reactions between iron and silicate), could accumulate at the boundary between the mantle and core and explain the anomalously high electrical conductivity of this region.  相似文献   

19.
Yoshino T  Manthilake G  Matsuzaki T  Katsura T 《Nature》2008,451(7176):326-329
The Earth's mantle transition zone could potentially store a large amount of water, as the minerals wadsleyite and ringwoodite incorporate a significant amount of water in their crystal structure. The water content in the transition zone can be estimated from the electrical conductivities of hydrous wadsleyite and ringwoodite, although such estimates depend on accurate knowledge of the two conduction mechanisms in these minerals (small polaron and proton conductions), which early studies have failed to distinguish between. Here we report the electrical conductivity of these two minerals obtained by high-pressure multi-anvil experiments. We found that the small polaron conductions of these minerals are substantially lower than previously estimated. The contributions of proton conduction are small at temperatures corresponding to the mantle transition zone and the conductivity of wadsleyite is considerably lower than that of ringwoodite for both mechanisms. The dry model mantle shows considerable conductivity jumps associated with the olivine-wadsleyite, wadsleyite-ringwoodite and post-spinel transitions. Such a dry model explains well the currently available conductivity-depth profiles obtained from geoelectromagnetic studies. We therefore conclude that there is no need to introduce a significant amount of water in the mantle transition to satisfy electrical conductivity constraints.  相似文献   

20.
Huang X  Xu Y  Karato S 《Nature》2005,434(7034):746-749
The distribution of water in the Earth's interior reflects the way in which the Earth has evolved, and has an important influence on its material properties. Minerals in the transition zone of the Earth's mantle (from approximately 410 to approximately 660 km depth) have large water solubility, and hence it is thought that the transition zone might act as a water reservoir. When the water content of the transition zone exceeds a critical value, upwelling flow might result in partial melting at approximately 410 km, which would affect the distribution of certain elements in the Earth. However, the amount of water in the transition zone has remained unknown. Here we determined the effects of water and temperature on the electrical conductivity of the minerals wadsleyite and ringwoodite to infer the water content of the transition zone. We find that the electrical conductivity of these minerals depends strongly on water content but only weakly on temperature. By comparing these results with geophysically inferred conductivity, we infer that the water content in the mantle transition zone varies regionally, but that its value in the Pacific is estimated to be approximately 0.1-0.2 wt%. These values significantly exceed the estimated critical water content in the upper mantle, suggesting that partial melting may indeed occur at approximately 410 km depth, at least in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号