首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 156 毫秒
1.
研究了小波分析在小电流接地系统单相接地故障选线中的应用,利用小波变换这一新兴的信号分析工具,提取故障时的暂态量信息,构造出了基于小波变换模极大值奇异性检测原理的新型选线判据.着重介绍了利用小波变换提取故障信号的暂态高频分量,进行故障选线的方法.并且利用Madab提供的小波分析工具进行了大量的选线仿真实验,验证了该方法的有效性和可靠性.  相似文献   

2.
研究了小波分析在小电流接地系统单相接地故障选线中的应用,利用小波变换这一新兴的信号分析工具,提取故障时的暂态量信息,构造出了基于小波变换模极大值奇异性检测原理的新型选线判据。着重介绍了利用小波变换提取故障信号的暂态高频分量,进行故障选线的方法。并且利用Matlab提供的小波分析工具进行了大量的选线仿真实验,验证了该方法的有效性和可靠性。  相似文献   

3.
小波变换理论在时域和频域的局部化性质,使之能有效地检测信号的奇异性.文章分析了电力系统故障暂态信号的奇异性,得出其奇异的特殊性,即具有不确定的奇异度,从而提出用小波变换进行奇异检测时对所用小波函数的要求,确保奇异性的准确检出,并给出了故障时刻检测的仿真.  相似文献   

4.
奇异信号的奇异点经常携带有比较重要的信息,它是信号的重要特征之一.证明了小波变换能用来检测信号的奇异性,利用小波变换模的极大值和信号奇异点的关系,可以分析信号局部奇异性.信号局部奇异性用李氏指数来描述.研究了奇异性检测小波基的选择条件.给出了实例分析,结果表明,小波变换在信号奇异性检测和局部化分析方面具有优异特性.  相似文献   

5.
李明超  樊可清 《科技信息》2014,(15):113+158
转子机械在生产线上发生故障时,由于工况恶劣,其检测信号往往混有噪声,导致碰磨信号很难被检测出来。而碰磨故障信号拥有较强的奇异性,噪声却与碰磨性质的信号奇异性不一样,基于小波变换模的极大值对奇异性的判别原理,可以利用小波去噪。最后结合基于峭度的统计方法计算结果,判别出碰磨故障。本文最终通过实验验证了这种方法的有效性。  相似文献   

6.
所有微机继电保护装置中都设有启动元件,行波启动元件是超高速保护必不可少的组成部分.文章从度量函数Lipschitz系数的小波理论出发,并结合对行波信号的分析,借鉴小波变换分析暂态行波的基本思想,将小波变换应用到暂态行波信号的提取和分析,探讨了一种新型的信号检测方法-小波变换模之和法(WTMS),以"影响锥"内小波变换模的积分来度量信号的奇异性,用以准确检测、区分故障行波与噪声干扰,避免在故障时拒动的现象,从而弥补了以往行波启动算法的不足.大量的Matlab仿真实验验证了该算法的快速和可靠性.  相似文献   

7.
传统的傅立叶分析难以处理电力系统故障时产生的暂态信号.小波变换具有良好的时频局部化特性,为分析非平稳、突变信号提供了有效的途径.通过多尺度分析,将连续小波变换离散化,得到适合数字信号处理的快速算法——离散小波变换.最后给出了应用离散小波变换进行输电线路故障测距的实例,通过仿真分析证明该方法可以极大地提高测距精度.  相似文献   

8.
基于小波变换的配电网单相接地故障选线方法   总被引:1,自引:0,他引:1  
分析了配电系统发生单相接地时的故障特征,在研究了现有选线方法的基础上,提出了利用小波变换的奇异性检测理论进行故障选线的新方法。该方法对单相接地故障的暂态分量进行小波变换,通过比较零序电流小波变换模极大值的大小和极性判别出故障线路。MATLAB仿真结果表明,该方法能够准确、可靠地实现故障选线,且不受故障电阻及中性点接地方式的影响。  相似文献   

9.
采用小波分解可以很好地研究信号的自相似性.小波变换能够分析信号奇异点的位置及奇异性强弱,即通过小波变换后的局部极大值在不同尺度上的衰减特性来衡量信号的奇异性.介绍了小波变换的基本概念,对信号特征和突变点检测算法进行研究,利用小波多分辨分析将突变信号进行多尺度分解,通过分解的信号确定突变点位置.通过Matlab实验,分析了信号奇异点定位和小波检测的结果,当小波变换尺度越精细时,检测突变点位置越精确,验证了小波变换是分析信号自相似性和突变点检测的有力工具.  相似文献   

10.
DSP和小波理论对暂态行波信号奇异性的检测   总被引:1,自引:0,他引:1  
介绍了一种以高速数字信号处理芯片为运行平台的奇异性检测系统,该系统以DSP芯片TMS320F2812为中央处理器,采用三次B-样条小波对电力系统暂态行波信号进行奇异性检测.给出了硬、软件系统结构框图,小波算法,实验结果与结论.  相似文献   

11.
由于谐振接地系统在电网中被广泛的应用,所以谐振接地系统单相接地故障选线一直以来是研究的热点。针对现有的谐振接地系统故障选线方法存在的不足,基于短时投入并联电阻,提高暂态特征分量的选线方法,提出了一种优化方案;即通过可控硅控制消弧线圈并联电阻,增强故障线路的特征信号,把提取的故障时的零序电流暂态信号进行小波变换,检测分解和重构后的信号的奇异性,从而确定故障线路。仿真结果表明了优化方案的准确性。  相似文献   

12.
谐波小波及其时频剖面图在旋转机械诊断中的应用   总被引:14,自引:1,他引:13  
分析了谐波小波的定义、特点,以及用谐波小波时频图、等高线图表示谐波波分解结果的方法。分析结果表明,这两种方法虽然可以直观表示信号的时频能量分布以及无噪声信号中的微弱奇异成分,但当信号中存在噪声时,用这些方法将难以检测信号的奇异性,因而它们在工程实际中几乎是没有用的。提出了谐波小波时频剖面图(Time-Ffrequency Profile Plot,即TFPP)方法,利用该方法可以检测含噪声信号的微  相似文献   

13.
在小波分解和重构理论的基础上,提出了基于故障暂态电流α模分量突变量的故障选线方法。根据小波理论善于处理突变信号的特点,利用小波理论对暂态电流、电压信号进行分析,由分解后的小波系数构成综合故障测度进行选线,小波重构信号则对故障和扰动进行识别。大量的仿真试验证明,提出的选线方法可以很好地对故障线路进行选择,同时不受扰动影响。  相似文献   

14.
提出一种基于Rogowski谐振原理和小波能谱的配电网单端暂态保护新方案,即在线路边界接入Rogowski谐振装置,以此改变线路边界谐振频率处暂态信号传输特性,从而区分区内外故障,以实现配电网的全线速动.通过小波变换模极大值确定故障发生时刻,然后提取故障时间段内谐振频段信号和低频段信号,并计算频段信号能量比值大小即可获得可靠的保护判据.最后通过PSCAD/EMTDC仿真验证该保护方案的有效性,并且该方案在不同的故障状况下均能可靠地区分区内外故障.  相似文献   

15.
针对超高压输电线路的超高速保护而建立人工神经网络模型,将输电线路行波信息和高频暂态电流信号经小波变换数据预处理,并提取相关时域和频域特征值之后作为分布式神经网络的输入,以通过人工神经网络来准确识别线路故障类型、故障位置,为实现保护的超高速动作提供判据。  相似文献   

16.
高压直流(high voltage direct current, HVDC)输电线路对故障暂态电压信号大多数频段都具有衰减作用,而HVDC的物理边界对高频分量会产生较强的衰减作用,对低频分量会产生一定的放大作用。根据上述特征,提出了一种基于变分模态分解(variational mode decomposition, VMD)-麻雀搜索算法(sparrow search algorithm, SSA)和多频段希尔伯特(Hilbert)能量幅值的高压直流输电线路单端量保护方法。利用SSA对VMD参数进行优化后,对故障暂态电压信号进行分解,然后对分解后的各个内涵模态分量(intrinsic mode functions, IMF)进行Hilbert变换求取其200~1 200 Hz低频段和8~12 kHz高频段的Hilbert能量,利用低频段和高频段Hilbert能量之比构造故障区段识别保护判据,通过正极和负极其高低频段Hilbert能量和之比来判断故障极。仿真实验证明,所提出的方法能够有效避免利用经验模态分解(empirical mode decomposition, EMD)故障信号时...  相似文献   

17.
为了解决大容量发电机组和超高压输电系统的相继投入运行使电力系统输电距离增大、负荷加重、故障暂态过程中的暂态分量增加、持续时间变长等问题,在分析电力系统故障特性的基础上,将小波信号奇异性检测理论运用于电力系统故障检测中,给出一种新颖的故障检测算法。在原故障检测判据基础上,提出新的补充判据。仿真研究表明,该算法可快速、准确、有效地检测故障,其检测时间可达0.4 ms。  相似文献   

18.
交直流混联系统对距离保护暂态超越的影响及解决措施   总被引:2,自引:0,他引:2  
针对传统的距离保护应用于交直流混联系统,特别是当直流系统发生换相失败时存在暂态超越的问题,分析发现交直流混联系统直流侧发生换相失败时,故障暂态信号中含有大量衰减缓慢的低频分量、非周期分量及高频分量,这是引起距离保护暂态超越的根本原因.同时,给出一种先利用分布参数模型将保护安装处的电压、电流补偿至整定点,再采用R-L线路模型建立微分方程,识别出整定点与故障点之间距离的保护方案.动模数据仿真结果表明,该方案在特高压、长线路末端故障时能够有效地防止暂态超越,不受线路分布电容、低频分量以及非周期分量的影响,提高了长线距离保护的动作可靠性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号