首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
通过离子液体1-磺酸丁基-3-甲基咪唑内盐与磷钨酸在水溶液中反应制备了一种固体酸催化剂[MIMSB]3PW12O40,利用XRD、FT-IR、电位滴定、SEM等方法对其进行了分析,并以正丁酸与正丁醇的酯化反应为探针反应,考察了该催化剂在酯化反应中的催化性能,系统探讨了催化剂用量、醇酸用量比、反应时间、反应温度等对催化反应的影响.结果表明,[MIMSB]3PW12O40催化剂仍保留了磷钨酸的Keggin结构,而且具有较高的酸强度;它在催化酯化反应中表现出较好的催化活性,丁酸丁酯的产率达到93.4%,而且方便回收,具有较好的稳定性.  相似文献   

2.
合成了三种咪唑磺酸基多酸离子液体催化剂,并将其用于棕榈酸与甲醇的酯化反应研究.探讨了有机阳离子磺酸基上的酸性催化点位与多酸Brnsted酸性催化点位协同作用对酯化反应的影响.结果表明,[MIMPS]H2PW12O40(MIMPS=C7H13N2SO3)在醇酸物质的量比11∶1,催化剂用量0.06 mmol,反应时间8 h,反应温度65℃时转化率达98.3%,催化剂可循环使用6次.  相似文献   

3.
室温离子液体介质中酯化反应的研究   总被引:1,自引:0,他引:1  
在多种1,3二烷基咪唑离子液体和适量三氯化铝构成的催化反应体系中,研究了丙酸和一系列醇的酯化反应.与浓硫酸作催化剂相比,离子液体四氟硼酸1甲基3丁基咪唑([BMIm]BF4)/三氯化铝催化体系具有更好的催化活性,可获得适中至高的酯化率与选择性,并且产物和离子液体催化体系不溶而分层,便于分离,离子液体可以稳定地循环使用5次以上.  相似文献   

4.
离子液体易于循环利用从而减少对环境的污染,已从许多实验得到证实。而离子液体中的偶联反应是合成C-C键最有效方法之一,近几年来一直是催化化学和有机合成的研究热点。本文简要介绍离子液体的分类、物理化学特性、合成,及离子液体在偶联反应中的应用。  相似文献   

5.
桑潇 《科技信息》2010,(27):I0023-I0023,I0101
本文综述了离子液体的特点及在化学反应中的应用,并展望了离子液体的应用前景。  相似文献   

6.
离子液体作为一种绿色溶剂,由于其优良性质,在分离、有机合成及催化反应等领域被广泛应用.本文综述了近年来离子液体作为一种绿色溶剂和催化剂在酯合成反应中的应用研究进展.  相似文献   

7.
本文阐述了杂多酸(HPA)的结构特征与其催化活性间的关系,讨论了杂多酸在酯化反应中的应用。  相似文献   

8.
室温离子液体催化肉桂酸甲酯的合成   总被引:1,自引:0,他引:1  
陈卓  李勇  王强  梁斌 《贵州科学》2007,25(2):43-46
研究了以苯甲醛为原料,经Perkin反应、甲酯化反应合成肉桂酸甲酯的方法.重点研究了在多种1,3-二烷基咪唑离子液体和适量三氯化铝构成的催化反应体系中的酯化反应,该酯化反应的最佳反应条件为:n肉桂酸 :n甲醇=1:8 ,催化剂用量2mL,反应温度90~95℃,反应时间6小时,收率可达98.8%.产物和离子液体催化体系不溶而分层,便于分离,且离子液体可以重复使用.  相似文献   

9.
离子液体的合成及其在Baylis-Hillman反应中的应用   总被引:1,自引:0,他引:1  
合成了离子液体N-丁基吡啶硝酸盐([BPy]^ NO3^-),并将它作为反应溶剂用于邻硝基苯甲醛与丙烯酸丁酯的Baylis-Hillman反应.在离子液体作用下,反应时间大大缩短,产率适中。  相似文献   

10.
制备了一种质子酸离子液体2-吡咯烷酮硫酸氢盐([Hnhp]HSO4),并用作催化油酸甲酯的合成.研究表明,在催化油酸酯化的过程中,该离子液体具备优良的催化活性及稳定性.在醇酸摩尔比为6∶1,反应温度为70℃,反应时间为3h,[Hnhp]HSO4用量为油酸质量的12.5%的条件下,油酸酯化率达97.54%以上,且可循环使用.  相似文献   

11.
利用Raman及其表面增强Raman光谱对不同阴离子的3种丁基咪唑离子液体及其负载膜的结构进行测定分析表征.结果表明:3种离子液体其[C4mim]+阳离子结构非常相近,受不同阴离子的影响较小.在室温常压下阳离子[C4mim]+同时存在偏移和扭转两种同分异构体.相比于亲水性支撑离子液体膜,疏水性PVDF可支撑离子液体膜的普通Raman难以测定,采用以银溶胶作为表面增强活性基底的表面增强Raman与亲水性可支撑离子液体膜的普通Raman,以及纯离子液体的普通Raman高度一致,充分显示出表面增强Raman光谱对支撑离子液体膜结构表征的适用性及优越性,为今后在离子液体膜方面的Raman研究开启了新的方向.  相似文献   

12.
以亲水性离子液体1-丁基-3-甲基咪唑对甲基苯磺酸盐作反应介质,醋酸铵为催化剂,研究了不同的芳香醛和脂肪醛与活泼亚甲基类化合物氰乙酸乙酯进行Knoevenagel缩合反应.反应产物经熔点、核磁共振谱、GS-MS、气相色谱等表征.结果表明,该方法产率高,速度快,选择性好,所使用的离子液体能够重复使用.  相似文献   

13.
几种无机盐与离子液体催化苊的偶联反应   总被引:1,自引:0,他引:1  
为合成新型功能高分子中间体,分别研究了在AlCl3,FeCl3,ZnCl2等无机盐和[Bmim]Cl/FeCl3离子液体催化作用下,苊在温和条件常温常压下的偶联反应.经GC/MS分析发现生成了3,3'-联苊.用GC法考察了不同反应条件对3,3’-联苊产率的影响,得到了各催化剂作用的优化反应条件.结果表明,上述几种催化剂中,[Bmim]Cl/FeCl3离子液体对苊的偶联反应催化效果最好,在该催化剂作用的优化反应条件下,3,3’-联苊产率为48.71%,选择性78.56%,且[Bmim]Cl/FeCl3离子液体对环境无污染,并可循环使用.通过重结晶、层析等方法得到了功能高分子中间体3,3‘-联苊纯品,并用GC/MS,FTIR和^1H NMR等分析测试手段鉴定了其结构.  相似文献   

14.
用自制的铂超微电极研究了二茂铁(Fc)在咪唑类离子液体中的电化学行为,计算了Fc在离子液体中的扩散系数和粘度系数.结果表明,二茂铁在这些离子液体中均呈现较好的可逆性,测得的扩散系数比用常规电极测得的大,说明超微电极比常规电极有更大的扩散传质速率.  相似文献   

15.
A novel cellulose hydrogel is prepared by regenerating cellulose from its ionic liquid solution. The transparency cellulose hydrogel presents a good chemical stability and an acceptable mechanical property. This non-toxic cellulose hydrogel should be biocompatible and may be useful in the future as a biomaterial. Supported by the National Natural Science Foundation of China (Grant No. 20604017) and Scientific Research Foundation for the Returned Overseas Chinese Scholars, Ministry of Education of China  相似文献   

16.
离子液体微乳液研究进展   总被引:1,自引:0,他引:1  
本文综述了离子液体/油/表面活性剂、离子液体/离子液体/表面活性剂和离子液体/水/表面活性剂等微乳液体系的相态及相关应用,探讨了水、温度及其他因素对离子液体微乳液体系的影响。离子液体种类繁多, 目前尚缺乏对各种类型的离子液体微乳液的全面研究及对其聚集体特性的深入研究。 预期离子液体微乳液将会向开发新体系、深化聚集体特性及应用研究等方面拓展。  相似文献   

17.
以N-甲基吗啉,氯磺酸为原料合成N-甲基-N-磺酸基吗啉盐酸盐的酸性离子液体,将其代替浓硫酸用于催化乙酸酐和水杨酸的酯化反应,合成阿司匹林。考察了原料配比、离子液体用量、反应温度、反应时间等因素对阿司匹林产率的影响,并通过正交实验确定最佳合成条件。结果表明该离子液体对阿司匹林的合成具有良好的催化效果,在水杨酸20mmol、乙酸酐40mmol、N-甲基-N-磺酸基吗啉盐酸盐离子液体3mL、反应温度70℃、反应时间30min的条件下,阿司匹林产率可达77.12%。  相似文献   

18.
离子液体具有高热稳定性、不挥发和良好的溶解性,常作为绿色溶剂和催化剂使用.近年来,离子液体在聚合物阻燃中的应用呈增长趋势.综述了离子液体在聚合物中的阻燃应用研究与进展,重点阐述了离子液体阻燃的主要种类与合成、阻燃机理、作用方式以及在不同聚合物中的阻燃应用.离子液体催化成炭以及多元素协效的阻燃机理普遍被人们接受.就离子液...  相似文献   

19.
采用纳米铸造方案,在盐酸介质中,以咪唑盐类离子液体为模板剂,正硅酸乙酯为前驱体,合成了一系列介孔或超大微孔氧化硅整体材料,详细考察了盐酸浓度、盐酸用量和前驱体用量对材料结构参数的影响.结果表明,随盐酸浓度的升高,材料孔体积和孔径呈大致减小的趋势;随TEOS用量的增加,材料孔体积和孔径依次减小.材料大都具有高的比表面积和均一的孔径.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号