首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 781 毫秒
1.
1.設函數f(z)在含有一段實軸的區域G中是正則的,f(z)在實軸上取實值,在區域G的其他部份,滿足下面的條件: 當(?)(z)>0時,(?)(f(Z))>0; 當(?)(z)<0時,(?)(f(z))<0。(1)稱這種函數f(Z)為區域G上的一個典型實照函數。設區域G為單位圓|z|<1,在|z|<1上的一切典型實照函數f(z)適合條件f(0)=0,f′(0)=1的全體成一函數族T_r。戈魯淨證明:對於T_r中任一函數f(z),必有單調增加的實函數a(θ),(0≤θ≤π),適合於  相似文献   

2.
§1 引言 1-1.设區域B包含實軸上的一些區間I,f(z)是B中之一半純函數。設f(z)在這些區間I上取到實值,並且在其餘部分,(f(z))与(z)常常保持同號:即當(z)>0時,(f(z))>0; 當(z)>0時,(f(z))<0, 羅各辛斯基稱這種函數f(z)為區域B上的一個典型實照函數。戈魯辛研究這樣的函數族T_r:其中任一函數f(z)在單位圓|z|<1上是典型實照的正則函数,並且f(0)=0,f'(0)=1。他證明了下面兩個定理:  相似文献   

3.
1.S表示|z|<1中正則且單葉的函數f(z)=z+a_2z~2+…的全體所成之族。∑表示在區域|ζ|>1中半純且單葉的函數F(ζ)=ζ+α_0+(a_1/ζ)+…的全體所成之族。 設f(z)/f'(0)∈S,且當|z|<1時|f(z)|<1。當f'(0)≥T,(01上是正則,單葉的,  相似文献   

4.
P次对称典型实照函数   总被引:1,自引:0,他引:1  
若f(z)在包含一段实轴的区域G内是解析的,并且在实数轴上具有实数值,且在G内其余各点满足J(z)J(f(z))≥0 (1)则叫做f(z)在G上是一个典型实照函数。当G是单位园盘E:|z|<1时,罗格净斯基(Rogosinki)首先研究了E内满足f(0)=0,f′(0)=1的正则典型实照函数f(z)。在原子碰撞理论中曾遇到这样的函数。  相似文献   

5.
1.序言 對在圓|x|<1中的解析函數f(z),若在圓|z|<1中存在一個凸像函數φ(z),使f′(z)/φ′(z)有大於0的實部,我们说f(z)在圆|z|<1中,对于φ(z)为近于凸的函數。當f(Z)與φ(z)分别满足條件f(z)=-f(-z),φ(z)=-φ(-z)时,称  相似文献   

6.
1.設f(z)=z+c_2z~2+…+c_nz~n+…是單位圓|z|<1中的正則單葉函數,其全體形成函數族S。小堀憲(A.Kobori)證明:若f(z)是一單葉星像函數,則其開始多項式S_n(z)=z+c_2z~2+…+c_nz~n的凸像半徑是1/8。本篇改善這個定理為如下的形式: 定理1.設f(z)∈S,則f(z)的一切開始多項式S_n(z)在圓|z|<1/8中成凸像  相似文献   

7.
1.設函數w=f(z)=z+α_2z~2+…在單位圓|z|<1中是正則的,單葉的這種函數的全體記做S。當函數f(z)∈S時,單位圓|z|<1經過w=f(z)映照後得到w平面上的區域D_f。設w_v,v=1,2,…,n是w-平面上不屬於D_f而适合於關係arg w_(v+1)/w=2π/n,v=1,2,…,n,(w_(n+1)=w_1)的n個點,設  相似文献   

8.
1.設函數f_k(z)满足下面(a)或(b)兩種條件之一: (a)a_1.f_k(z)在單位圓|z|<1中是正則的,在實軸上取實數恼归_式為  相似文献   

9.
1.引言。设n是一整数,函數w=f(z)=z+sum from v=1 to ∞ [C_(vn+1)~(n)z~(vn+1)]在單位圆E_z,z|<1,上是正則的單葉函數。它映照E_x於D_f,區域D_f具有這樣的性質:當w_0∈D_f時,e~(i(2kπ/n))W_0∈D_f,k=0,1,2,…,n-1。這種函數f(z)的全體成一族S_n,簡寫S_1=S。若D_f以原點W=0為星形中心,就是說當W_0∈D_f時,線段0W_0整個地落在區域D_f中,則称f(z)是一個星像函数,記其全體所成之族为S_n~*,簡寫S_1~*=S~*。星像函數的特徵是  相似文献   

10.
本文通過極值函數的造作,利用從屬原理来估計一族解析函數的模和它的係數,並且證明另一族解析函數的一個掩蔽定理。類似的問題,曾經被Z.Nehari所研究。本文所得的結果,可述如下: 定理1.設f(z)=αz+…在單位圓的內部|z|<1是正則的,並且|f(z)|<1。設由W=f(z)將|z|<1映照成黎曼面W(f),W(f)在W平面上的投影成一區域D_f。假如D_f有如下的境界點d:圓|W|<|d|被W(f)的一葉而只有一葉所遮蓋,  相似文献   

11.
S表示單位圆|z|<1上單葉且正則的函數 f(z)=z+α_2z~2+α_3z~3+… (1.1)的全體所成之族。設S′是S的一個子族,S′中任一函數满足條件 R(α_3)>0,R(α_2)<0。對於S′中的函數,本文證明R(α_2+α_3)之最大值是可以達到的,其值是1.03…。達到此值的極值函數的一切係數都是實數,極值函數只有一個。舍勾和飛克得[6]謝缶和斯賓塞爾[3]以及沙拉烏洛夫先後用樓五納的參數表示法和變分法,求出 |a_3-αa_2~2|(0≤α<1)的值,並指出達到此值的極值函數的一切係數都是實數,而且極值函數只有一個。本篇僅用變分法来建立他們的定理。惜缶[4]指出使|a_n|達到最大值的函數(1.1),其映象區域的境界是一組伸展到無窮遠處的解析若當曲綫。謝缶和斯賓塞爾[3],戈魯辛[5]分別證明對於|a_4|和|a_5|的極值區域,其境界綫只有一根。本篇對於|a_6|和|a_7|證明同樣的事實。證明是靠着如下的引理:  相似文献   

12.
§1.設w=f(z)=z+sum from n=1 to ∞(α_(n+1)~(k) z~(kn+1))在單位圓|z|<1內是正則的,當它映照|z|<1於w平面,其映像關於w=0成星形,我們簡稱這種函數為一星形函數浧渥鍨镾_K~*。當K=1時,戈魯淨證明:  相似文献   

13.
1.引言:設k次對稱函數f_k(z)=z+sum from n=1 to ∞a_(nk+1)~(k)z~(nk+1)在單位圓|z|<1中是正則的,單葉的。此種函數的全體成一函數族S_k。設k次對稱函數F_k(z)=z+sum from n=1 to ∞c_(nk+1)~(k)/Z~(nk+1)在區域1<|z|<∞中是正則的,單葉的。此種函數的全體成一函數族∑_k。簡寫S_1為S。關於S_2中函數的係數,曾有人推测|a_(2n+1)~(2)|≤1,但當,2≥2時,就有人舉例证明它不一定成立。本文證明:  相似文献   

14.
§1.設函數W=f(ζ)=ζ+α_2ζ~2+…在單位圓|ζ|<1中是正則單葉的,且將單位圓映照为關於W=0成星形的區域D。這種函數的全體記做T。記σ(f,ρ)是圓周|W|=ρ上不屬於D的一切點所成的點集的勒貝格角測度,記  相似文献   

15.
1.对任一实数p,01上是单叶亚纯函数,当z→∞时,G(z)-z趋于一有限常数且G(1/p)=0,这类函数记为∑(p)。显然,g(z)∈  相似文献   

16.
一、引言设给定函数,f(z)=sum from n=0 to ∞ c_nz~n (|z|<1),其中α_n是复数。我们使用下列符号: S_n=α_0+α_1……+α_n=S_n~(0) S_n~(p)(p>-1)定义如下: sum from n=0 to ∞ S_n~(p) x~n=1/(1-x)~(p+1) sum from n=0 to ∞α_n x~n —z平面上的闭凸集(闭凸域,直线,射线,线段,点) G_ε—包含G在其内的凸区域,且G_ε的边界点与G的距离ξ≤ε。 Cesaro(齐查罗)求和:如果=S,就说级数sum from n=0 to ∞α_n用p阶Cesaro方法[(c;p)—法]可求和,共和为S,记作sum from n=0 to ∞α_n S. 条件(A):如果函数,f(z)在|z|<1解析,在闭圆|z-x_0|≤1-x。(任意x_0,0≤x_0<1)连续,则称函数,f(z)满足条件(A)。条件(B):如果函数,f(z)在圆|z-x_0|<1-x_0有界,在点z=1有放射边界值: f(1)=f(z), 则称,f(z)满足条件(B)。  相似文献   

17.
由Γолуэин的论文,我们知道下面定理:定理A:任與一没有外點,包含點W=0及不包含點W=∞的以有限條约當割线为其边界的單連通區域B。,可以对应地建立一複数函数k(t),它在0≤t<+∞除了有限個第一類不連續點外是連續的,且模为1,使得單葉映射圆|z|<1为區域B。的函数W=f(z),f(0)=0,f'(0)>0,可用下式表示:  相似文献   

18.
本文共分兩個部分,第一部分是圓界區域上的單葉函數的係數的估計,第二部分是平均直徑的估計。我們知道,關於單位圓上的正則單葉函數f(z)=z+c_2z~2+……的係數C_n,  相似文献   

19.
设函数 f(z)、d(z)、ω(z) 在 |z|<1 内解析,且 |d(z)|≤1,|ω(z)|<1,ω(0)=0.函数 d(z) 是有界的,ω(z) 适合 Schwarz 引理条件.记 g(z)=d(z)f(ω(z)),称g(z) 拟从属于 f(z),记为 g相似文献   

20.
本文得到单叶亚纯函∑(P)类及∑(p,q)类函数的偏差定理及旋转角定理。定义1 设0相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号