首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
利用真空蒸镀的方法,制备了结构为ITO/NPB(20 nm)/MCP(3 nm)/MCP:Firpic(z%,x nm)/TPBi(10nm)/Alq3(30 nm)/Cs2CO3:Ag2O(2 nm,20%)/Al(100 nm)的器件.研究了不同掺杂浓度(z=5,8,10和12)和不同厚度(x=5,10,15,20和25)对器件性能的影响.首先确定MCP:Firpic层的厚度为5 nm,调节掺杂浓度.结果表明当掺杂浓度为10%时,器件的效率和亮度都为最大.驱动电压为8 V时,最大电流效率为6.996 cd/A;驱动电压为15 V时,最大亮度为10 064 cd/m2.在10%的掺杂浓度下,调节MCP:Firpic层的厚度.当厚度为20 nm时,器件的性能较好.驱动电压为13 V时,电流密度为2.248 mA/cm2,效率为10.35 cd/A;驱动电压为21 V时,电流密度为304.16 mA/cm2,亮度为21 950 cd/m2.  相似文献   

2.
采用锌金属配合物DPIHQZn((E)-2-(4-(4,5-diphenyl-1H-imidazol-2-yl)styryl)quinolin-Zinc),将其掺杂到CBP中作为黄光发射层,制备了黄色有机电致发光器件(OLED),器件结构:ITO/2T-NATA(20 nm)/CBP:x wt.%DPIHQZn(30 nm)/Alq3(40 nm)/LiF(0.5 nm)/Al,研究了4种不同掺杂浓度(x=5,10,15,20)对黄光器件性能的影响,利用黄光发射层中主体材料与客体材料之间能量转移特性,得到了性能较好的有机电致黄光器件.在相同条件下,当掺杂浓度为15%时,其性能在4组器件中达到最佳,在驱动电压为14 V时呈黄光发射,器件最大亮度达到4 261 cd/m2,最大电流效率为0.84 cd/A,器件的色坐标稳定.  相似文献   

3.
利用真空蒸镀的方法制备了结构为:ITO/m-MTDATA(20 nm)/NPB(15 nm)/DPAVBi:Rub(x nm,2%)/Alq3(25 nm)/Li F(0.5 nm)/Al(100 nm)的器件.研究了掺杂层的不同厚度(x=15,25和30 nm)对器件性能的影响.结果是当掺杂层的厚度为25 nm时,器件的性能最好.当电流密度为524.22 m A/cm2时,获得最大电流效率,为4.37 cd/A;获得最大亮度,为22 890 cd/m2.器件的高亮度与高效率主要是因为主客体之间的能量转移很充分.  相似文献   

4.
利用真空蒸镀的方法,制备了结构为:ITO/m-MTDATA(20 nm)/NPB(10 nm)/Rubrene(0.2 nm)/DPVBi:BCzVBi(x nm,10%)/Alq_3(20 nm)/Cs_2CO_3:Ag_2O(2 nm,20%)/Al(100 nm)的器件.研究了掺杂层的不同厚度(x=20,25和30)对器件性能的影响.结果是当掺杂层的厚度为25 nm时,器件的性能最好.电流密度为285.064 m A/cm~2时,器件B获得最大亮度为13 560 cd/m~2,同时获得最大电流效率,为4.76 cd/A.器件的高亮度与高效率主要是因为主客体之间的能量转移很充分.  相似文献   

5.
制备了基于N-BDAVBi的高效率双发光层蓝色有机电致发光器件(OLED),器件中将蓝色荧光染料NBDAVBi作为客体发光材料分别掺入主体材料TCTA和TPBi中,器件结构为ITO/m-MTDATA(40 nm)/NPB(10nm)/TCTA:N-BDAVBi(15 nm)/TPBi:N-BDAVBi(15 nm)/TPBi(30 nm)/LiF(0.6 nm)/Al(150 nm),最大电流效率达到8.44 cd/A,CIE色坐标为(0.176,0.314),并且在12 V的电压下,亮度最大达到11 860 cd/m2,分别是单发光层结构器件的1.85倍和1.2倍.器件性能提高主要归因于双发光层扩大了载流子复合区域,主客体间的Forster能量转移.  相似文献   

6.
通过对器件结构的优化设计,改善了白光有机电致发光器件的色度.该器件的结构为ITO/2T-NATA/NPBX/DPVBi/CBP:Ir(ppy)3/Alq3:DCJTB/BCP/Alq3/LiF/Al.当驱动电压为6 V时,器件的最大电流效率为5.94 cd/A.器件在驱动电压为19 V,电流密度为570 mA/cm2时,最大亮度达到13540 cd/m2,色坐标为(0.31,0.39).而且,当器件的亮度由数十cd/m2增大到最大亮度时,器件的色坐标稳定在(0.31,0.37)附近.  相似文献   

7.
利用新型铝配合物Alq2(DBM)制备了非掺杂型的双层有机电致白光器件,其结构为ITO/NPB(44 nm)/Alq2(DBM)(66 nm)/LiF(0.8 nm)/Al(100 nm).该器件6 V电压下启亮,在11 V时实现了白光发射,色坐标为(0.32,0.38).器件的最大发光亮度达到468 cd/m2,对应的电流密度为311 mA/cm2.  相似文献   

8.
采用7-N,N-二乙胺基-香豆素-3-羧酸(DCCA)为掺杂剂,4,4'-二(9-咔唑基)联苯(CBP)为基质,设计制备了掺杂蓝光器件ITO/2-TNATA(5 nm)/NPB(40 nm)/CBP:DCCA(30 nm)/Bu-PBD(30 nm)/LiF(1 nm)/Al(100 nm),探讨了掺杂质量分数为1%和2%时器件的发光性能.结果表明2个掺杂器件均具有8 V左右的启亮电压,DCCA掺杂质量分数为1%时器件的性能较好,电致发光(EL)峰与其稀溶液的光致发光(PL)峰一致,位于456 nm,而且EL发光强度随电压的改变而改变,最大亮度594 cd·m-2时的电压为12.5 V.当电流密度为20 mA·cm-2时,器件的发光效率为1.01 cd·A-1.  相似文献   

9.
文章讨论了采用真空热蒸镀的方法制备了适用于夜间照明的有机发光器件.器件选用热活化延迟荧光材料DPEPO作为发光层主体材料,热活化延迟荧光材料DMAC-DPS作为蓝光掺杂剂,PO-01作为橙光发射的磷光掺杂剂.器件结构为ITO/TCTA(20 nm)/DPEPO:x%DMAC-DPS:0.6%PO-01(15 nm)/TAZ(20 nm)/LiF(0.8 nm)/Al(100 nm).通过改变DMAC-DPS的掺杂浓度来研究器件性能的变化.实验结果表明:当x=20时,器件的最大电流效率可达26.19 cd/A,最大功率效率可达7.47 lm/W,最大亮度可达4 619 cd/m~2,器件的发光效率较高.  相似文献   

10.
采用蓝色荧光有机染料DSA-Ph作为客体材料,将其掺入主体材料BUBH-3中,制备了高效率色稳定的单发光层掺杂结构的蓝色有机荧光器件.当DSA-Ph掺杂质量比为3 wt.%时,器件的最大电流效率4.17 cd/A,对应色坐标为(0.161,0.286),亮度为5 038 cd/m2.当电压为14 V时,器件的最大亮度为16 160 cd/m2.另外,亮度从907 cd/m2增加到14 680 cd/m2过程中,其色坐标从(0.163,0.287)到(0.159,0.281),变化量ΔCIExy仅为(0.004,0.006).  相似文献   

11.
文章讨论了分别利用(4,4,-bis-triphenylsilanyl-biphenyl)BSB;(1,4-bis(triphenyllsily)benzene)UGH2;(1,3-bis(9H-carbazol-9-yl)benzene)MCP三种不同的主体材料制备有机电致红光器件.所用的器件结构为:ITO\Meo-TPD(30 nm)\NPB(20 nm)\MCP:Ir(piq)3(5%:20 nm)\BCP(5 nm)\TPBi(40 nm)\LiF(1 nm)\Al,主体材料为MCP时,主客体之间的LUMO能级之差较小,该组器件的亮度最大,当外加电压达到16 V时,器件的发光亮度为4514cd/m2.当以BSB为主体材料时,主客体之间的的HOMO能级之差ΔH较大,器件的漏电流较小,相应的发光效率较高,当电压为7 V时,器件的最大电流效率为3.30 cd/A.  相似文献   

12.
增强空穴注入能力是提高有机电致发光器件(OLEDs)光电性能的一个重要因素.采用碱金属化合物Cu I掺杂NPB结构作为器件的空穴注入层,制备了空穴注入能力增强的有机磷光器件.当发光亮度为1 000 cd/m2时,器件的驱动电压为6. 44 V,相比于参考器件降低了约2. 11 V;器件的最大功率效率为7. 7 lm/W,相比于参考器件提高了约71%;器件的最大亮度达到41 570 cd/m2.上述实验结果表明,优化的Cu I:NPB结构有效促进了器件的空穴注入和传输能力,从而降低了驱动电压,提高了发光亮度,改善了功率效率.  相似文献   

13.
为研究探讨石墨烯薄层对有机电致发光器件(OLEDs)性能的影响,制备了一组OLEDs,其基本结构为ITO/NPB(50 nm)/Alq3(80 nm)/LiF(0.5 nm)/Al.分别采取不插入石墨烯薄层、将石墨烯薄层插入到NPB和ITO之间、插入到Alq3和LiF之间以及在NPB中掺杂石墨烯薄层的方式,制作了4组器件.研究结果表明:在NPB中掺杂石墨烯薄层的器件,在同等条件下性能最佳;当电压达到15 V时,器件电流效率达到最大值3.40 cd·A-1,与其他组器件最高效率相比增大1.46倍;同时,器件的亮度也达到最大值10 070 cd·m-2,比其他组器件最大亮度增大2.37倍.  相似文献   

14.
采用TPBi/Alq3作为复合电子传输层,制备了发光层非掺杂结构的蓝色有机荧光电致发光器件.器件的最大电流效率为3.0 cd/A,对应的发光亮度为6 178 cd/m2,发光色坐标位于(0.167,0.161).器件的最大发光亮度为14 240 cd/m2.电压从6 V增加到14 V过程中,器件的色坐标变化量ΔCIExy仅为(0.001,0.002).通过插入的激子探测层研究发现,器件的激子形成区域主要位于DOPPP/TPBi界面处.  相似文献   

15.
通过聚乙烯咔唑(PVK)和发绿光的9’9-二辛基芴(DOF)与硒芬(SeH)的共聚物(PFSeH)形成聚合物双层器件结构(ITO/PEDOT/PVK/PFSeH/Ba/A l)实现白光发射.通过优化PVK和PFSeH各层的厚度,得到了光谱稳定的白光发射.在电压为13V时该器件的最大发光效率为0.51 cd/A,相应的亮度为750 cd/m2和色坐标C IE1931为(0.32,0.32).在10~18 V的电压范围内双层器件的白光发射光谱稳定不变.双层器件发白光的原因是由于PVK层的蓝光发射和PFSeH层的绿光发射及PFSeH与PVK双层界面间形成基激复合物的红光发射.  相似文献   

16.
有机发光二极管(OLED)中的高性能材料和新制备工艺一直是该领域的研究热点.以磷钨杂多酸溶液为前驱体,采用旋涂法在氧化铟锡(ITO)阳极上经退火制备磷钨氧化物薄膜,通过不同的退火条件调控薄膜的功函数.以X射线光电子能谱(XPS)、原子力显微镜(AFM)和紫外可见吸收光谱(UV-Vis)表征其组成、表面粗糙度和透光性.以此薄膜作为空穴注入层(HIL),构建结构为[ITO/HIL(35,nm)/NPB(25,nm)/C545T:Alq3(40,nm)/Alq3(15,nm)/LiF(1,nm)/Al(100,nm)]的绿光OLED器件.结果表明,采用旋涂法制备了表面平整、透光度大于92%,及功函数可调的磷钨氧化物薄膜,基于真空中退火的磷钨氧化物空穴注入层的器件表现出优异的发光性能,启亮电压为3.6,V,最大亮度为31,160,cd/m2,最大电流效率为11.54,cd/A,最大功率效率为4.45,lm/W.这一结果为研究金属氧化物空穴注入材料及其成膜方法以及获得高性能发光器件提供了新的启示.  相似文献   

17.
报导了蓝色有机电致发光材料9,9'-联二蒽(9,9'-bianthracene,简称BA)作为发光层,研制了结构为ITO/PVK:TPD/BA/Alq3/Al的蓝色有机发光器件.对该器件的发光及电学性能进行了研究.启亮电压约为12 V,在24 V外加电压下亮度达到最大值2 433 cd/m2.  相似文献   

18.
本文利用无机材料ZnO作为空穴缓冲层,制备了结构为ITO/ZnO/NPB/Alq3/Al的有机电致发光器件。用计算机控制的KEITHLEY2400-PR655系统测量器件的电压-电流-亮度特性。研究结果表明,当ZnO薄膜的厚度为2 nm时,器件的电流效率可达1.65 cd/A,最大亮度为3 449 cd/m2;而没有加入缓冲层的同类器件,最大亮度仅为869.7 cd/m2,最大电流效率为0.46 cd/A。由此可以看出,加入ZnO空穴缓冲层后,最大亮度提高3.97倍,最大电流效率提高3.59倍。分析认为适当厚度的ZnO薄膜降低了发光层空穴的浓度,提高了电子和空穴的复合率,从而降低了电流密度,提高了器件的电流效率,改善了器件性能。  相似文献   

19.
为研究磁场对基于NPBx有机电致绿光器件效率的影响,制备了一组基于NPBx有机电致绿光器件,其结构为ITO/NPBx(50 nm)/Alq3(80 nm)/Li F(0.5 nm)/Al.分别测量了该器件在大小不同的外加磁场条件下的器件效率变化率、电流变化率等特性曲线,其中磁场大小变化范围为0~100 m T.测试出电流的变化率随磁场的增加是正值,表明电流是增加的;随着磁场强度的增加,电流变化率逐渐上升.器件效率的变化率在磁场的作用下均为正值,即效率是增加的.研究结果表明:在电压为6.5 V时,外加磁场达到30 m T时,该器件电流效率增加量达到最大,约为7.4%,达到饱和后开始下降;其他电压下的效率变化情况与其基本一致,达到饱和后呈现下降趋势.  相似文献   

20.
研究了在空穴传输层2T-NATA中掺杂不同浓度的p型氧化剂F4-TCNQ制备高性能的绿色有机电致发光器件(OLED).F4-TCNQ在空穴传输层2T-NATA中的掺杂浓度为8%(质量百分比)时(驱动电压为22V),其亮度达到4256cd/m~2,同时与未掺杂的器件相比,其最大发光效率由2.9cd/A增大到3.4 cd/A.分析结果表明,OLED性能的改善主要归因于:首先,掺杂F4-TCNQ使得器件做到了欧姆接触,使消耗在ITO/空穴传输层界面的电压达到最小;其次,掺杂F4-TCNQ提高了载流子形成激子的几率,最终使器件性能得到了很大程度的改善.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号