共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
为了探究进口周向总压畸变对压气机性能的影响,以及不同畸变角下压气机端区流场对畸变响应的区别,对跨声速轴流压气机一级动静叶进行全周非定常数值模拟,分别采用均匀来流,畸变角为30°、90°和120°的畸变来流这4种进口条件。进口畸变使压气机的性能明显恶化,并且随着畸变角的增大恶化加剧。畸变角为120°时,随着动叶扫过畸变区,动叶叶顶区域激波的结构和强度发生改变,叶顶间隙泄漏涡的轨迹和强度也发生周期性变化。畸变也会对下游静叶流动产生影响,使静叶叶顶和角区分离加重。当畸变角为90°时,所影响的动叶流道数减少但流场对畸变的响应规律没变。当畸变角减小到30°时,畸变经过动叶完全衰减,静叶流场几乎不受影响。研究结果揭示了压气机性能改变和叶顶、叶根端区流动结构动态特征与畸变来流间的关系,可为提高压气机抗畸变能力提供理论基础。 相似文献
3.
小展弦比叶栅非轴对称端壁造型及气动性能的数值研究 总被引:1,自引:0,他引:1
提出了基于双控制型线的非轴对称端壁造型新方法,并在某小展弦比叶栅的上下端壁上完成了非轴对称端壁造型设计.采用数值求解Reynolds-Averaged Navier-Stokes(RANS)和考虑转捩模型的SST湍流模型对轴对称端壁原始叶栅和非轴对称端壁叶栅进行了详细的流场特性分析,结果表明:所提方法可以有效减少进入叶栅通道涡的低能流体,从而抑制了通道涡的发展,减少了二次流损失.由于叶栅展弦比较小,所以非轴对称端壁会影响到整个流场,使得出口气流角在整个叶高范围内有所增大,中叶展处叶片负荷下降,型面损失减少.与轴对称端壁原始叶栅相比,非轴对称端壁叶栅效率提高了0.22%,从而验证了所提方法的有效性. 相似文献
4.
为提高端壁等离子体气动激励对高负荷压气机扩压叶栅角区流动分离的控制能力,需要进一步优化激励布局,实现更高效的流动控制。针对多种端壁等离子体激励布局形式,分别开展了毫秒脉冲等离子体气动激励抑制叶栅角区流动分离的实验研究。结果表明:端壁横向流动对角区流动分离的影响大于流向附面层的流动分离。端壁激励布局对流动控制效果至关重要。优化后的激励布局沿三维角区端壁分离线切向,流动控制效果最好,50%叶高处总压损失减小11.8%;但随着来流攻角的变化,导致激励器布置不再与端壁分离线相切,流动控制效果减弱,因此要根据控制攻角的范围需求,结合具体的流场结构,设计合适的激励布局;适当的增加激励组数能有效促进射流与近壁面气流掺混,提高流动控制效果。 相似文献
5.
为研究非轴对称端壁造型对大涵道比风扇角区失速流动的改善作用,对某风扇进行了平面叶栅模化设计及非轴对称端壁优化。采用数值模拟方法,以风扇根部叶型为基础进行模化设计;在此基础上,采用两种不同的控制点分布方法对平面叶栅进行非轴对称端壁优化改型。研究结果表明:模化后的平面叶栅角区失速流动及叶片加载特点与风扇原型基本一致;采用自由曲面及类两面角曲面两种非轴造型对平面叶栅角区进行优化,叶栅总压损失系数分别降低了4.57%和5.38%;将流场改善效果较好的类两面角曲面造型应用于风扇原型角区,结果表明该造型使得风扇效率提高了0.441%,角区失速现象也得到了有效的抑制。深入的流场分析表明,类两面角曲面的非轴对称端壁造型,沿流向能有效推迟压气机平面叶栅通道涡向吸力面的发展,沿径向通过使涡结构上移减弱在端壁附近吸力面附面层和通道涡的相互作用;与此同时,对大涵道比风扇原型的角区失速流动也能起到较好控制效果。 相似文献
6.
采用双控制型线方法对高负荷低展弦比透平级完成了非轴对称端壁造型设计;采用RANS方程和考虑转捩模型的SST紊流模型对轴对称端壁透平级和非轴对称端壁透平级进行了气动性能的分析和对比.结果表明:非轴对称端壁造型设计方法通过降低周向压力梯度减小了透平级的二次流损失,提高了透平级效率达0.16%;静叶流场的变化引起了动叶进口条件的改变,从而导致动叶进口压力和反动度增大. 相似文献
7.
为揭示非轴对称端壁控制涡轮动叶二次流的物理机制,采用三角函数造型方法,对设计工况下某一燃气涡轮的第一级动叶进行数值研究.结果表明,只有在合适的非轴对称端壁半径扰动量下,才能获得较好的气动收益;扰动半径在5%~10%叶高内,性能会有所提升.相对于造型幅值,气动性能对造型几何位置更为敏感.本文采用的三角函数造型法主要通过合理降低横向压力梯度,推迟通道涡发展,从而减弱通道涡强度和维度,进而降低流动损失. 相似文献
8.
非轴对称端壁成型技术的实验研究 总被引:1,自引:0,他引:1
通过风洞实验对三角函数非轴对称端壁成型法和压差非轴对称端壁成型法的效果进行了实验研究与考核.结果表明:与轴对称环形端壁相比,这2种非轴对称端壁使得总压损失系数都有不同程度的减小,在叶栅出口下游段距尾缘2 mm截面上,2套造型端壁流道的总压损失系数分别降低了7.78%和10.20%;在叶栅出口下游段距尾缘4 mm截面处,2套端壁造型流道的总压损失系数分别降低了9.70%和14.22%.实验还验证了2种端壁成型方法的有效性,采用这2种成型方法设计的叶栅流道能够降低叶栅的二次流流动损失,提高级效率. 相似文献
9.
为研究端壁翼刀对跨音速压气机环型叶栅特性及二次流的影响,采用三维定常N-S方程及Realizablek-ε湍流模型,在跨音速下对可控扩散叶型的压气机环形叶栅进行加装不同周向位置和不同高度端壁翼刀情况下叶栅流场的数值模拟.结果表明:合理选择翼刀安装位置、高度,可有效控制压气机叶栅的二次流,降低叶栅的总损失.加装在距叶片压力面50%节距处、高度为3.3 mm的翼刀设置方式为最佳翼刀设置方式. 相似文献
10.
11.
《西安交通大学学报》2017,(7)
采用计算流体动力学软件ANSYS CFX11.0、以NASA跨声速透平第一级动叶为研究对象,对带气膜冷却孔的叶栅近前缘端壁区域的流动和换热特性进行了研究,计算获得了3种气膜孔分布条件下,吹风比分别为0.3、0.5、0.7以及孔径分别为1mm、1.5mm时叶栅端壁处的流场结构和斯坦顿数分布。计算结果表明:气膜孔的数目及分布对端壁换热性能和换热均匀性有显著影响,减小孔间距与孔径的比值可以降低前缘端壁的换热系数、提高端壁换热的均匀性;吹风比对冷却流的作用范围和贴壁性有很大影响,所研究的3种吹风比中,吹风比为0.5时壁面换热系数最小,吹风比为0.7时换热系数最大;当吹风比保持0.5不变且气膜孔的直径由1mm增大到1.5mm时,冷却流在端壁上影响的距离增加,相邻冷却流之间区域的换热强度降低。该结果可为透平动叶端壁换热特性的改善和气膜冷却特性的提高提供参考。 相似文献
12.
非轴对称端壁成型及其对叶栅损失影响的数值研究 总被引:12,自引:0,他引:12
根据叶栅非轴对称端壁成型的基本原理,探讨了非轴对称端壁成型的技术,利用三角函数构建了叶栅非轴对称端壁的型面,对5种不同端壁的叶栅进行了数值模拟,并采用三维时均可压缩N-S方程组求解方法,对构建的非轴对称端壁的跨音速直列叶栅进行了数值研究.结果表明:采用非轴对称端壁可有效降低叶栅二次流损失,所建立的非轴对称端壁成型方法效果比较明显;成型过程中单峰幅值控制函数要明显优于双峰函数,单峰幅值控制函数中最大幅值约占5%叶高为宜,此时计算结果显示在叶栅128%轴向弦长处总压损失降低了约4.7%。 相似文献
13.
为了提高实际燃机涡轮端壁的气膜冷却效率,对某航空发动机涡轮静叶端壁的气膜冷却特性进行了数值模拟研究。首先采用实验结果对湍流模型进行了校核,并验证了所研究模型的网格无关性,在此基础上研究了端壁离散气膜孔的气膜冷却特性,并采用给定实验端壁热流输入条件计算了整个端壁的换热特性;分析了5种冷气质量流量比(1.4%、2.1%、2.7%、3.1%、3.8%)和5种气膜冷气射流角度(20°、25°、30°、35°、40°)下端壁离散气膜孔的流动特性、气膜冷却特性以及换热特性。计算结果表明:相同射流角(40°)条件下,冷气质量流量比为1.4%时,端壁平均气膜冷却效率达到0.21;继续增大冷气质量流量比会导致气膜脱离端壁表面,使得端壁整体的气膜冷却效率下降;随着冷气质量流量比增加,叶栅通道总压损失增加,强化了气膜孔出口处的气流掺混,增加了换热效率;受到端壁二次流以及原有气膜孔结构的影响,气膜冷气射流角度为20°时冷却效果最佳,在相同质量流量比(1.4%)条件下,端壁平均气膜冷却效率达到0.27;减小射流角度对端壁表面换热强度改变较小。 相似文献
14.
实验对短周期风洞中无气膜孔和带气膜孔时涡轮叶片端壁的换热做了实验研究,得出了无气膜孔端壁换热系数和叶栅入口雷诺数、出口马赫数之间的变化关系,另外得出了带气膜孔端壁在不同的叶栅入口雷诺数、出口马赫数、流量比时对换热系数的影响。实验结果表明:无气膜孔端壁上的换热系数分别在不同的叶栅入口雷诺数和出口马赫数下有着明显的变化;带气膜孔端壁上换热系数随流量比和叶栅入口雷诺数的增大而增大,而在低流量比时马赫数对端壁换热系数没有明显的影响。 相似文献
15.
为了研究叶栅装配间隙泄漏流对透平叶片端壁气膜冷却特性的影响,依据真实重型燃气透平叶片参数,搭建了端壁气膜冷却实验台。采用压力敏感漆技术测量了不同质量流量比和装配间隙角度下端壁的气膜冷却特性,使用压力扫描阀测量了主流进口雷诺数和叶片表面压力分布。通过数值计算模拟了实验叶片装配间隙的流动结构,得到了装配间隙冷气出流质量流量比及射流角度的气膜冷却特性。结果表明:在装配间隙冷气出流质量流量比为0.1%~1.0%的范围内,在相同射流角度下,增加装配间隙质量流量能够提升透平端壁气膜冷却有效度,并增大装配间隙下游出口气膜覆盖面积,冷气质量流量比为1.0%时端壁气膜冷却有效度达到最高。由于叶片端壁表面的压力梯度导致装配间隙出流集中在流道中部及出口位置。在研究的60°~90°射流角范围内,在相同质量流量比下,减小装配间隙射流角度能够有效提升端壁气膜冷却有效度,75°射流角相较于90°垂直入射条件下的气膜冷却有效度增加接近一倍;射流角为60°时端壁气膜冷却有效度达到最高。 相似文献
16.
采用数值计算方法研究了前缘倒角造型动叶的端区气热性能,分析了3种前缘形式(无倒角、直线型倒角、抛物线型倒角)的叶片端区的二次流结构、气动损失和传热特性,对比了有、无前缘倒角时马蹄涡和通道涡对端区流动传热性能的影响机制。结果表明:前缘倒角造型显著减小了端壁前缘区域的切应力、通道下游偏转角和前缘倒角角区的马蹄涡尺寸和强度,但对通道涡的抑制作用较小;前缘倒角削弱了端区横向二次流动,使得通道下游总压损失减小;抛物线型前缘倒角的角区湍动能和马蹄涡尺寸略小于直线型前缘倒角造型的相应参数;3种前缘倒角造型叶片通道下游端壁的平均Nu沿流向均逐渐增大;相对于无前缘倒角造型叶片,带前缘倒角造型叶片的端壁前缘区域节距方向平均Nu最高下降了约40%。,但通道下游端壁节距方向平均Nu仅下降约8%;在通道下游,抛物线型前缘倒角叶片端壁节距方向平均Nu略低于直线型前缘倒角叶片。 相似文献
17.
18.
19.
为了提升高负荷涡轮级的气动效率,发展了基于样条曲面的非轴对称端壁造型方法。以该参数化造型方法为基础,结合高效智能优化算法和经过校核的数值仿真方法,建立了涡轮非轴对称端壁设计优化平台,并以某小展弦比高压涡轮级为研究对象,以效率为优化目标,以流量为约束条件,在级环境和发动机工况下开展了非轴对称端壁优化设计。结果表明:优化设计后的涡轮动叶相对于参考设计,涡轮级的总总效率提升0.26%;非轴对称端壁造型改变了动叶下端壁附近的压力分布,动叶吸力面侧压力系数相对于参考设计显著提升,这降低了动叶叶片通道内的横向压力梯度,抑制了通道中的二次流动;非轴对称端壁造型改变了叶片通道中的涡系结构,相对于参考设计,非轴对称端壁造型使得马蹄涡压力面分支在叶片通道内部沿着叶片压力面迁移,在靠近通道出口的位置才汇入通道涡,这削弱了通道涡的强度,进而降低了气动损失,提高了涡轮级效率。 相似文献
20.
为分析端部放矿中放出体形态,获得大结构参数下最优的崩矿步距,基于颗粒元理论和PFC3D程序,构建具有矿石散体细观力学性质的放矿模型. 通过已有研究结论与模拟结果的对比分析,验证了基于PFC程序的放矿模型的可靠性. 在此基础上,开展18m×20m结构参数下不同端壁倾角崩矿步距研究. 研究结果表明,不同倾角端壁条件下放出体形态不完整,并不是一个规则的椭球体. 当放矿量相同时,放出体高度随端壁倾角的减小而增大,放出体整体形态也随之越来越"瘦长".在无限边界和不同倾角端壁条件下,放出体高度的变化趋势均可概括为两个阶段:在放矿初始阶段,放出体高度呈指数形式快速增加,随放矿量的增加,其增长率逐渐减小;随后,放出体高度将随放矿量的增加而呈线性增长的趋势. 建议在18 m × 20 m结构参数下采用85°~90°的端壁倾角,4. 8 m的崩矿步距. 相似文献