首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
G-M法在箱梁桥面板计算中的应用   总被引:5,自引:1,他引:4  
根据能量比拟原理 ,通过对箱梁桥面板作用车轮荷载后的应变能计算 ,得到其比拟简支正交异性板的刚度参数 ,再利用G -M法图表计算横向分布影响线 ,从而得到箱梁桥面板的荷载有效分布宽度 ,最后 ,对算例进行了计算 ,并总结出箱梁桥面板荷载有效分布宽度的一些规律  相似文献   

2.
为了研究波形钢腹板箱梁的桥面板有效分布宽度,制作了一片模型试验梁,对其进行了静载非破坏性试验,研究了此种结构桥面板的有效分布宽度变化规律.结合现行公路桥规值和有限元结果,在3种有效分布宽度计算值比较的基础上对现行公路桥规值进行修正,得到了不同工况下的有效分布宽度修正系数.结果表明:按现行公路桥规计算的有效分布宽度值相比试验值、有限元结果略小,应对桥规值乘以大于1.0的修正系数,使之适用于波形钢腹板箱梁的有效分布宽度计算.  相似文献   

3.
针对目前混凝土箱梁悬臂板计算的不合理性,以有限元为基础,结合诸多算法,应用子模型技术分析了箱梁畸变、悬臂板长度及坡度、荷载作用位置等参数对混凝土箱梁悬臂板有效分布宽度的影响规律。在此基础上,依据最小二乘法原理,利用Matlab分布拟合得到混凝土箱梁跨中悬臂板有效分布宽度的实用计算公式。结果表明:畸变大,有效分布宽度增大;悬臂板长度和坡度与有效分布宽度变化趋势相同,呈曲线关系;荷载作用点靠近悬臂板根部,有效分布宽度变小。相对于其他算法,有效分布宽度实用计算公式所得结果接近试验数据。  相似文献   

4.
为确保机场滑行道桥受力安全,有必要研究滑行桥桥面板的横向有效分布宽度的合理取值。本文建立机场滑行桥桥面板三维数值精细化分析模型,利用损伤塑性本构模型模拟混凝土材料非线性,分析了A380、B747和A300三种机型轮载作用下滑行桥桥面板的横向有效分布宽度取值。分析结果表明:采用数值精细化分析方法得到的飞机轮载作用下滑行道桥桥面板的横向有效分布宽度较采用公路桥规的计算值增大,如飞机轮载作用于桥面板跨中时横向有效分布宽度增幅为18%;桥面板横向有效分布宽度取值随机型不同而存在差异,如A380和B747机型作用时得到的横向有效分布宽度分别为1.64m和1.52m;当考虑飞机轮载作用下桥面板塑性发展时,桥面板横向有效分布宽度计算值较材料弹性状态而言增大,如飞机轮载作用于桥面板跨中时横向有效分布宽度增幅为8.5%,说明飞机轮载作用时桥面板进入非线性受力状态而出现内力重分布,所以计算飞机轮载下滑行道桥桥面板横向有效分布宽度的合理取值应考虑材料非线性。  相似文献   

5.
目的确定影响剪力滞系数的主要几何参数,总结计算翼缘有效宽度比的经验公式.方法基于有限元软件Midas/FEA,计算集中(均布)荷载作用下腹板厚度、顶板厚度、荷载类型、宽跨比等因素对大跨度变截面波形钢腹板组合连续箱梁剪力滞效应的影响,找出其中对剪力滞效应有主要影响的几何参数,利用数据回归分析方法研究翼缘有效分布宽度取值问题.结果剪力滞效应受荷载作用类型影响较大.明确宽跨比是影响箱梁剪力滞效应的主要几何参数.结论建立了集中荷载作用下波形钢腹板组合箱梁翼缘有效分布宽度计算的经验公式.  相似文献   

6.
目的提出弹性支撑无推力框架计算方法,以提高宽幅装配式箱梁桥荷载横向分布系数计算的准确性与适用性.方法通过计算装配式箱梁桥在单位荷载作用下的应变能,基于能量比拟原理,得到其对应的弹性支撑无推力框架及其刚度参数;再利用平面杆系有限元计算弹性支撑无推力框架柱的荷载横向分布系数,从而得到宽幅装配式箱梁桥各主梁的荷载横向分布系数;以贵州某一宽跨比为0.87的装配式箱梁桥为背景,分别采用G-M法、ANSYS有限元数值方法、弹性支撑无推力框架计算法计算,并与实桥荷载试验计算结果进行比较分析.结果等效弹性支撑无推力框架计算得到的荷载横向分布系数与荷载试验法结果较为接近,误差在10%以内,与G-M法、ANSYS有限元数值方法计算结果相比,不仅精确度高且更加方便高效.结论等效弹性支撑无推力框架模型能准确计算大宽跨比装配式箱梁桥荷载横向分布系数,且对于一般宽跨比装配式箱梁桥具有较好的适用性,满足工程实际要求.  相似文献   

7.
目的研究车辆和疲劳荷载作用下钢桥面板有效工作宽度的计算方法.方法选取国内某大桥主跨建立节段钢箱梁有限元模型和单个U肋模型,对车辆荷载纵桥向和横桥向加载形式、计算截面位置及加载位置进行分析.结果当车辆相邻车轮横向间距为1.3、1.8、2 m时,其有效工作宽度未发生重叠,可采用横向单侧车轮加载计算钢桥面板的有效工作宽度.当车辆纵向轴距为1.2 m和1.4 m时,其前后轴的作用效应发生重叠,因此需考虑前后轴共同作用计算钢桥面板有效工作宽度.在靠近中腹板各600 mm左右,中腹板附近U肋下缘应力变化很大,在55.4%左右,超出这个范围U肋下缘应力变化很小,各U肋下缘应力值在5.2%左右变化.相对于顶板厚度为16 mm模型,不同顶板板厚的U肋下缘应力、顶板应力和桥面板变形的有效工作宽度系数变化分别在20%、2%、14%以内.结论提出的钢桥面板顶板有效工作宽度和U肋下缘应力有效工作宽度及变形有效分布宽度计算方法,为钢桥面板第二体系与疲劳的计算提供简便方法.  相似文献   

8.
为了研究UHPC华夫桥面单向板的荷载有效分布宽度及其抗弯承载力的计算方法,采用ANSYS软件建立了41组华夫板有限元模型.通过数值分析研究了华夫桥面单向板横向跨径、纵横肋尺寸与布置、荷载作用面积及支承条件对其弹性和塑性阶段荷载有效分布宽度的影响.考虑横向跨径和横肋间距,拟合了华夫桥面单向板荷载有效分布宽度的计算公式.基于平截面假定,推导出华夫桥面单向板抗弯承载力计算的有效分布宽度法.研究结果表明,固支华夫桥面单向板的荷载有效分布宽度较简支板小30% ~ 50%.当华夫桥面板横向跨径L、肋宽br、纵肋间距S1、横肋间距St及车轮荷载面积a1b1满足以1<S1-br,b1 <St-br,St≤0.6L时,建议使用所提公式来计算荷载有效分布宽度,且计算结果与试验结果吻合良好.  相似文献   

9.
通过对预应力混凝土薄壁箱梁剪力滞效应的理论分析,重点阐述了有限元法理论在剪力滞分析中应用,介绍了规范考虑剪力滞效应的有效分布宽度方法.利用一实际混凝土箱梁桥进行有限元建模计算,对于箱梁在受到不同荷载作用时表现的剪力滞效应进行了分析,指出箱梁在对称荷载作用情况下仍然表现出剪力滞效应.通过箱梁有限元模型计算指出了初等梁理论...  相似文献   

10.
混凝土薄壁连续箱梁剪力滞效应试验研究   总被引:1,自引:0,他引:1  
对大比例长悬臂梯形截面混凝土薄壁连续箱梁在弹性范围内的剪力滞效应进行试验研究与分析,并研究在各级荷载作用下,中间支座和跨中截面荷载一挠度曲线以及翼缘混凝土应变分布规律等。考虑翼缘弯曲正应力沿宽度方向和厚度方向的不均匀性,给出翼缘等效宽度计算系数公式;根据试验结果,得到连续箱梁中间支座和跨中截面翼缘等效宽度计算系数,并和现行JTGD62-2004规范中翼缘等效宽度计算系数计算结果进行比较。研究结果表明:混凝土薄壁连续箱梁无论在中间支座处,还是在跨中截面均存在正剪力滞现象:规范连续箱梁翼缘等效计算系数公式偏于安全。  相似文献   

11.
组合梁斜拉桥有效宽度系数及实用计算方法   总被引:1,自引:0,他引:1  
为了掌握组合斜拉桥主梁混凝土桥面板在轴向力和弯矩共同作用下有效宽度系数沿跨长方向的分布规律,进行了空间有限元计算,提出了斜拉索水平轴向力作用下混凝土桥面板有效宽度系数沿跨长方向分布曲线计算公式.同时,通过理论分析得出了弯矩作用下混凝土桥面板有效宽度系数计算方法.研究结果表明:斜拉索水平轴向力在混凝土桥面板中的传递角度可取28°;综合考虑轴力和弯矩复合作用的有效宽度系数实用计算方法,能够准确反映组合斜拉桥混凝土板的应力状态,对保证结构安全、改进设计方法具有重要参考价值.  相似文献   

12.
针对目前规范中缺少有关波形钢腹板组合连续梁桥有效翼缘宽度的相关规定,提出一种翼缘有效宽度计算方法,以某大跨度波形钢腹板预应力混凝土组合连续箱梁桥为背景,对其有效翼缘宽度计算进行初步研究,研究结果表明:在自重和集中荷载作用下,跨中混凝上内衬边缘的剪力滞效应显著,翼缘板的有效翼缘宽度系数分别达到0.87和0.7左右,其它部位剪力滞效应不明显;而预应力荷载作用下,波形钢腹板组合连续箱梁的各截面处的剪力滞效应均不明显,可以忽略不计,最后通过有限元计算结果与国内外规范对比发现,波形钢腹板箱梁跨中部分有效翼缘宽度与混凝土箱梁基本一致,设计计算时可参照普通混凝土箱梁;内衬边缘截面的剪力滞效应介于普通混凝土箱梁与钢箱梁之间,其有效翼缘宽度的计算也应介于二者之间。  相似文献   

13.
双肋钢板组合桥梁(双钢板主梁与砼桥面板通过剪力钉连接)由于主梁间距大而存在明显的剪力滞效应。文中选取三跨双肋钢板组合连续桥梁(3×35 m)作为研究对象,采用ANSYS建立其有限元模型,分别对给定温度环境下受恒载和车道荷载作用的桥面板应力进行分析,计算其剪力滞系数。按最大正应力和合力大小不变的原则,将呈曲线分布的正截面应力简化成矩形分布,计算桥面板的有效宽度,并与规范计算结果进行对比。研究结果表明:在恒载和车道荷载作用下,中支点处存在显著的正剪力滞效应,剪力滞系数可达到1. 7左右。在中跨和边跨其余各截面均存在负剪力滞效应。从边支点截面到中支点截面由负剪力滞效应逐步向正剪力滞效应过渡,从中支点截面到中跨跨中截面则由正剪力滞效应逐步向负剪力滞效应过渡。与有限元方法相比,按照规范方法计算的边跨跨中和中跨跨中截面的桥面板有效宽度偏于保守,中支点截面按规范方法计算的有效宽度偏于不安全。  相似文献   

14.
为较简便地设计出波形钢腹板箱梁(BSW)桥的桥面板,基于框架分析法的基本原理,结合波形钢腹板箱梁的结构特点和力学特性,建立适用于单箱室波形钢腹板箱梁桥桥面板横向弯矩的计算方法,再对波形钢腹板箱梁和混凝土腹板箱梁在相同荷载作用下顶板的横向弯矩进行对比,对几座代表性的单箱室波形钢腹板箱梁桥顶板横向弯矩进行计算分析。研究结果表明:波形钢腹板箱梁桥的桥面板最大横向弯矩远高于同类混凝土腹板箱梁的横向弯矩峰值,提出的单箱波形钢腹板箱梁桥顶板横向设计弯矩的建议值可为今后同类波形钢腹板箱梁桥顶板尺寸拟定及配筋设计提供参考。  相似文献   

15.
通过对一片波形钢腹板单箱双室试验梁的弹性阶段试验,对沿桥面板横向不同位置荷载作用下的腹板竖向变形、纵向变形及桥面板横向应变进行了观测.分析了该组合梁的腹板受力性能及腹板支撑下的桥面板横向受力特征,得到了边腹板和中腹板的变形特征及腹板与顶板线刚度比对桥面板横向受力的影响.结果表明:不同横向位置荷载作用下,波形钢腹板单箱双室箱梁的中腹板与边腹板在变形及对桥面板的支撑上存在一定差异,即中腹板的纵向应变、竖向应变在荷载作用下的变化趋势不同于边腹板;波形钢腹板箱梁的桥面板横向应力随着腹板与顶板线刚度比的变化基本呈线性变化.  相似文献   

16.
为研究波形钢腹板组合箱梁桥横向受力特性及其对节段预制拼装工艺的影响,设计并匹配制造了2榀足尺模型节段梁,对试验梁施工全过程桥面板变形进行了测试,并进行了静力加载试验,研究了桥面板合理的数值分析方法.结果表明:波形钢腹板组合箱梁能满足节段双层存放、吊装运输等工序的横向受力要求,但在短线匹配预制过程中需采取措施控制桥面板变形;运营期组合箱梁横向受力足够安全,当加载至1.3~2.5倍车辆荷载设计值时,桥面板出现初始弯曲裂缝;由考虑钢混连接件的实体元模型计算所得的桥面板变形值与实测值吻合较好;简化平面框架模型则在横向内力计算方面具有足够精度,可用以指导桥面板设计.  相似文献   

17.
探讨了一种改进的方法计算混凝土箱梁加固混凝土T梁桥荷载横向分布,阐述了该方法建立超静定内力正则方程的基本原理及过程。分别采用本文方法、梁格法、修正的刚接梁法对某工程实例荷载横向分布进行计算,并对不同方法计算结果进行对比分析,验证了本文方法计算箱梁加固T梁桥荷载横向分布的有效性。通过对不同腹板间距箱梁的计算分析,认为修正的刚接梁法在箱梁腹板间距较小时计算结果较为准确;但当箱梁腹板间距大于1.5 m时,该方法无法考虑到箱梁横向变形对荷载横向分布的影响,导致计算结果存在一定程度失真,宜采用本文方法计算荷载横向分布。  相似文献   

18.
基于在体外预应力混凝土薄壁箱梁抗弯性能试验研究的基础上,重点研究了各级荷载作用,构件跨中截面混凝土应变分布变化规律,同时编制了箱形截面的等效“工”字形截面抗弯计算非线性分析程序,通过全过程对比分析,确定了体外预应力混凝土箱梁在抗弯正截面承栽力计算时等效“工”字形截面受压翼缘有效分布宽度和剪力滞系数,为体外预应力混凝土箱梁抗弯正截面承栽力计算奠定了基础.图5,表2,参10.  相似文献   

19.
针对受火后混凝土箱梁悬臂板的挠变与塌裂耦合灾害,利用热-力耦合方法对局部火灾模式下混凝土箱梁高温场、悬臂板变形及有效分布宽度进行了分析,研究了混凝土箱梁单侧局部火灾高温强热模式,计算了此模式下混凝土箱梁横桥向和纵桥向温度场的分布状态,分析了迎火面和背火面悬臂板变形和有效分布宽度随延火时间与荷载比的变化规律。研究结果表明:箱梁单侧腹板和翼缘板下侧受火,迎火面温度相对其他部位较高,背火区温度无变化,火温从箱形截面外侧到内侧呈明显的半渗层状梯度分布;顺桥向温度梯度线以强热区为中心沿跨径呈层流状分布,火灾的局部效应显著;迎火面悬臂板挠度随延火时间的增加逐渐增大,背火面悬臂板挠度随延火时间的增加直线下降,迎火面悬臂板挠度变化趋势明显大于背火面悬臂板挠度的变化趋势,并且挠度随荷载比的增加呈非线性增长关系;迎火面悬臂板有效分布宽度随延火时间的增加而减小,背火面悬臂板有效分布宽度随延火时间的增加而增大。研究可为桥梁的抗火设计实用方法的提出与火灾后桥梁加固提供依据。  相似文献   

20.
以弹性力学辛求解体系为基础,对薄壁闭口截面悬臂箱梁的剪力滞问题进行研究.将满跨均布荷载作用下的箱梁翼板部分进行简化,求解圣维南问题的解析解,给出了剪力滞和有效宽度的闭合多项式表达形式,并与国际规范及数值解加以比较.结果表明,所得公式表达简单,可以快速计算悬臂箱梁桥的有效宽度.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号